AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes

Sihan Zhao1Tomoya Kitagawa1Yuhei Miyauchi2,3Kazunari Matsuda2Hisanori Shinohara1( )Ryo Kitaura1( )
Department of Chemistry & Institute for Advanced ResearchNagoya UniversityNagoya464-8602Japan
Institute of Advanced EnergyKyoto UniversityUji, Kyoto611-0011Japan
Japan Science and Technology AgencyPRESTOSaitama332-0012Japan
Show Author Information

Graphical Abstract

Abstract

Although the inter-layer coupling in layered materials has attracted considerable interest due to its importance in determining physical properties of two-dimensional systems, studies on the inter-layer coupling in one-dimensional systems have so far been limited. Double-wall carbon nanotubes (DWCNTs) are one of the most fundamental and ideal model systems to study the inter-layer coupling in one-dimensional systems. In this work, Rayleigh scattering spectroscopy and transmission electron microscopy are used to characterize the electronic transition between inner-and outer-nanotubes of the exactly same individual DWCNT. We find that the inter-layer coupling is strong, leading to downshifts in most of the optical transition energies (up to ~0.2 eV) compared to isolated CNTs. We also find that the presence of metallic tubes lead to stronger shifts. The inter-layer screening of Coulomb interactions is one of the key factors in explaining the observed results.

Electronic Supplementary Material

Download File(s)
12274_2014_515_MOESM1_ESM.pdf (2.1 MB)

References

1

Li, G. H.; Luican, A.; dos Santos, J. M. B. L.; Neto, A. H. C.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109–113.

2

Brihuega, I.; Mallet, P.; Gonzalez-Herrero, H.; de Laissardiere, G. T.; Ugeda, M. M.; Magaud, L.; Gomez-Rodriguez, J. M.; Yndurain, F.; Veuillen, J. Y. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 2012, 109, 196802.

3

Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R. et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594–597.

4

Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

5

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

6

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N. Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

7

Andrews, R.; Jacques, D.; Qian, D. L.; Rantell, T. Multiwall carbon nanotubes: Synthesis and application. Acc. Chem. Res. 2002, 35, 1008–1017.

8

Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993.

9

Nath, M.; Govindaraj, A.; Rao, C. N. R. Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mat. 2001, 13, 283–286.

10

Levshov, D.; Than, T. X.; Arenal, R.; Popov, V. N.; Parret, R.; Paillet, M.; Jourdain, V.; Zahab, A. A.; Michel, T.; Yuzyuk, Y. I. et al. Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube. Nano Lett. 2011, 11, 4800–4804.

11

Liu, K. H.; Hong, X. P.; Wu, M. H.; Xiao, F. J.; Wang, W. L.; Bai, X. D.; Ager, J. W.; Aloni, S.; Zettl, A.; Wang, E. G. et al. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes. Nat. Commun. 2013, 4, 1375.

12

Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Nanotechnology: 'Buckypaper' from coaxial nanotubes. Nature 2005, 433, 476.

13

Kociak, M.; Suenaga, K.; Hirahara, K.; Saito, Y.; Nakahira, T.; Iijima, S. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 2002, 89, 155501.

14

Tison, Y.; Giusca, C. E.; Stolojan, V.; Hayashi, Y.; Silva, S. R. P. The inner shell influence on the electronic structure of double-walled carbon nanotubes. Adv. Mater. 2008, 20, 189–194.

15

Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 2009, 131, 62–63.

16

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by rayleigh scattering. Science 2004, 306, 1540–1543.

17

Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M.; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O'Brien, S.; Misewich, J. A.; Heinz, T. F. et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554–556.

18

Qin, L. C. Electron diffraction from carbon nanotubes. Rep. Prog. Phys. 2006, 69, 2761–2821.

19

Hirahara, K.; Kociak, M.; Bandow, S.; Nakahira, T.; Itoh, K.; Saito, Y.; Iijima, S. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction. Phys. Rev. B 2006, 73, 195420.

20

Jiang, H.; Nasibulin, A. G.; Brown, D. P. Kauppinen, E. I. Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon 2007, 45, 662–667.

21

Liu, K. H.; Xu, Z.; Wang, W. L.; Gao, P.; Fu, W. Y.; Bai, X. D.; Wang, E. G. Direct determination of atomic structure of large-indexed carbon nanotubes by electron diffraction: Application to double-walled nanotubes. J. Phys. D: Appl. Phys. 2009, 42, 125412.

22

Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotechnol. 2012, 7, 325–329.

23

Plentz, F.; Ribeiro, H. B.; Jorio, A.; Strano, M. S.; Pimenta, M. A. Direct experimental evidence of exciton-phonon bound states in carbon nanotubes. Phys. Rev. Lett. 2005, 95, 247401.

24

Berciaud, S.; Voisin, C.; Yan, H. G.; Chandra, B.; Caldwell, R.; Shan, Y. Y.; Brus, L. E.; Hone, J.; Heinz, T. F. Excitons and high-order optical transitions in individual carbon nanotubes: A rayleigh scattering spectroscopy study. Phys. Rev. B 2010, 81, 041414.

25
Hertel, T. Photophysics in Carbon Nanotubes and RelatedStructures. Guldi, D.; Martin, N., Eds; Wiley-VCH: Weinheim, 2010.
26

Lefebvre, J.; Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 167406.

27

Hertel, T.; Perebeinos, V.; Crochet, J.; Arnold, K.; Kappes, M.; Avouris, P. Intersubband decay of 1-D exciton resonances in carbon nanotubes. Nano Lett. 2008, 8, 87–91.

28

Lauret, J. S.; Voisin, C.; Cassabois, G.; Delalande, C.; Roussignol, P.; Jost, O.; Capes, L. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 2003, 90, 057404.

29

Koyama, T.; Asada, Y.; Hikosaka, N.; Miyata, Y.; Shinohara, H.; Nakamura, A. Ultrafast exciton energy transfer between nanoscale coaxial cylinders: Intertube transfer and luminescence quenching in double-walled carbon nanotubes. ACS Nano 2011, 5, 5881–5887.

30

Malic, E.; Maultzsch, J.; Reich, S.; Knorr, A. Excitonic Rayleigh scattering spectra of metallic single-walled carbon nanotubes. Phys. Rev. B 2010, 82, 115439.

31

Spataru, C. D.; Ismail-Beigi, S.; Benedict, L. X.; Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 077402.

32

Chang, E.; Bussi, G.; Ruini, A.; Molinari, E. Excitons in carbon nanotubes: An ab initio symmetry-based approach. Phys. Rev. Lett. 2004, 92, 196401.

33

Kane, C. L.; Mele, E. J. Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 2004, 93, 197402.

34

Lüer, L.; Hoseinkhani, S.; Polli, D.; Crochet, J.; Hertel, T.; Lanzani, G. Size and mobility of excitons in (6, 5) carbon nanotubes. Nat. Phys. 2009, 5, 54–58.

35

Tomio, Y.; Suzuura, H.; Ando, T. Interwall screening and excitons in double-wall carbon nanotubes. Phys. Rev. B 2012, 85, 085411.

36

Ohno, Y.; Iwasaki, S.; Murakami, Y.; Kishimoto, S.; Maruyama, S.; Mizutani, T. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 2006, 73, 235427.

37

Miyauchi, Y.; Saito, R.; Sato, K.; Ohno, Y.; Iwasaki, S.; Mizutani, T.; Jiang, J.; Maruyama, S. Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chem. Phys. Lett. 2007, 442, 394–399.

38

Sato, K.; Saito, R.; Jiang, J.; Dresselhaus, G.; Dresselhaus, M. S. Discontinuity in the family pattern of single-wall carbon nanotubes. Phys. Rev. B 2007, 76, 195446.

39

Wang, F.; Sfeir, M. Y.; Huang, L. M.; Huang, X. M. H.; Wu, Y.; Kim, J.; Hone, J.; O'Brien, S.; Brus, L. E.; Heinz, T. F. Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy. Phys. Rev. Lett. 2006, 96, 167401

Nano Research
Pages 1548-1555
Cite this article:
Zhao S, Kitagawa T, Miyauchi Y, et al. Rayleigh scattering studies on inter-layer interactions in structure-defined individual double-wall carbon nanotubes. Nano Research, 2014, 7(10): 1548-1555. https://doi.org/10.1007/s12274-014-0515-y

686

Views

20

Crossref

N/A

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 14 April 2014
Revised: 08 June 2014
Accepted: 12 June 2014
Published: 21 August 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return