AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate

Xiuli Yin1,§Yilei Li3,§Fen Ke1,§Chenfang Lin1Huabo Zhao1Lin Gan4Zhengtang Luo4Ruguang Zhao1Tony F. Heinz3( )Zonghai Hu1,2( )
State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsSchool of PhysicsPeking UniversityBeijing100871China
Collaborative Innovation Center for Quantum MatterBeijingChina
Departments of Physics and Electrical EngineeringColumbia UniversityNew YorkNY10027USA
Department of Chemical and Biomolecular EngineeringHong Kong University of Science and TechnologyKowloon, Hong KongChina

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequencies of the graphene G and 2D Raman modes were found to undergo red shifts, while the intensities of the two bands change by more than an order of magnitude. To understand the origin of these effects, we further characterized the samples by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The oxidation of the substrate produced an appreciable corrugation in the substrate without disrupting the crystalline order of the graphene overlayer and/or changing the carrier doping level. We explain the red shifts of the Raman frequencies in terms of tensile strain induced by corrugation of the graphene layer. The changes in Raman intensity with oxidation arise from the influence of the thin cuprous oxide film on the efficiency of light coupling with the graphene layer in the Raman scattering process.

Electronic Supplementary Material

Download File(s)
12274_2014_521_MOESM1_ESM.pdf (355.9 KB)

References

1

Novoselov, K. S.; Geim, A. K.; Morosov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, I. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

2

Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of quantum hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

3

Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman Spectroscopy of Graphene and Bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

4

He, R.; Zhao, L.; Petrone, N.; Kim, K. S.; Roth, M.; Hone, J.; Kim, P.; Pasupathy, A.; Pinczuk, A. Large Physisorption Strain in Chemical vapor deposition of graphene on copper substrates. Nano Lett. 2012, 12, 2408–2413.

5

Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.

6

Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J. Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

7

Huang, E. H.; Adam, S.; Das Sarma, S. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806.

8

Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.

9

Lin, C.; Huang, X.; Ke, F.; Jin, C.; Tong, N.; Yin, X.; Gan, L.; Guo, X.; Zhao, R.; Yang, W. et al. Quasi-one-dimensional graphene superlattices formed on high-index surfaces. Phys. Rev. B 2014, 89, 085416.

10

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

11

Huang, X.; Lin, C.; Yin, X.; Zhao, R.; Wang, E.; Hu, Z. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Phys. Sin. 2014, 63, 197301.

12

Shih, C. J.; Strano, M. S.; Blankschtein, D. Wetting translucency of graphene. Nat. Mater. 2013, 12, 866–869.

13

Hirsch, A.; Englert, J. M.; Hauke, F. Wet chemical functionalization of graphene. Acc. Chem. Res. 2013, 46, 87–96.

14

Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Chemical vapor deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

15

Gan, L.; Luo, Z. Turning off hydrogen to realize seeded growth of subcentimeter single-crystal graphene grains on copper. ACS Nano 2013, 7, 9480–9488.

16

Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

17

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

18

Borca, B.; Barja, S.; Garnica, M.; Sanchez-Portal, D.; Silkin, V. M.; Chulkov, E.V.; Hermanns, C. F.; Hinarejos, J. J.; Vazquez de Parga, A. L.; Arnau, A. et al. Potential energy landscape for hot electrons in periodically nanostructured graphene. Phys. Rev. Lett. 2010, 105, 036804.

19

Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Continuity of graphene on polycrystalline copper. Nano Lett. 2011, 11, 251–256.

20

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

21

Arco, L. G. D.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865–2873.

22

Luo, Z.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T. C. Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. ACS Nano 2011, 5, 9154–9160.

23

Cao, P.; Varghese, J. O.; Xu, K.; Heath, J. R. Visualizing local doping effects of individual water Clusters on gold(111)-supported graphene. Nano Lett. 2012, 12, 1459–1463.

24

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

25

Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

26

Granas, E.; Knudsen, J.; Schroder, U. A.; Gerber, T.; Busse, C.; Arman, M. A.; Schulte, K.; Andersen, J. N.; Michely, T. Oxygen intercalation under graphene on Ir(111): Energetics, kinetics and the role of graphene edges. ACS Nano 2012, 6, 9951–9963.

27

Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321–1327.

28

Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.

29

Lu, A. Y.; Wei, S. Y.; Wu, C. Y.; Hernandez, Y.; Chen, T. Y.; Liu, T. H.; Pao, C. W.; Chen, F. R.; Li, L. J.; Juang, Z. Y. Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv. 2012, 2, 3008–3013.

30

Zhou, F.; Li, Z.; Shenoy, G. J.; Li, L; Liu, H. Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 2013, 7, 6939–6947.

31

Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768.

32

Balkanski, M.; Nusimovici, M. A.; Reydellet, J. First order Raman spectrum of Cu2O. Solid State Commun. 1969, 7, 815–818.

33

Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutierrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pavlova, L. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999–1003.

34

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

35

Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.

36

Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 2008, 101, 156801.

37

Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

38

Metzger, C.; Remi, S.; Liu, M.; Kusminskiy, S. V.; Neto, A. H. C.; Swan, A. K.; Goldberg, B. B. Biaxial strain in graphene adhered to shallow depressions. Nano Lett. 2010, 10, 6–10.

39

Huang, M.; Yan, H.; Heinz, T. F.; Hone, J. Probing strain-induced electronic structure change in graphene by Raman spectroscopy. Nano Lett. 2010, 10, 4074–4079.

40

Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. 2009, 106, 7304–7308.

41

Guinea, F., Katsnelson, M. I., Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.

42
Ru, E. C. L.; Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy; Elsevier Science, 2008.
43

Palik, E. D. Handbook of Optical Constants of Solids; Academic Press, 1985.

Nano Research
Pages 1613-1622
Cite this article:
Yin X, Li Y, Ke F, et al. Evolution of the Raman spectrum of graphene grown on copper upon oxidation of the substrate. Nano Research, 2014, 7(11): 1613-1622. https://doi.org/10.1007/s12274-014-0521-0

689

Views

62

Crossref

N/A

Web of Science

61

Scopus

1

CSCD

Altmetrics

Received: 10 April 2014
Revised: 11 June 2014
Accepted: 24 June 2014
Published: 04 September 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return