Graphical Abstract

In order to develop an excellent pseudocapacitor with both high specific capacitance and outstanding stretchability to match with other devices applicable in future wearable and bio-implantable systems, we focus our studies on three vital aspects: Stretchability of hybrid film electrodes, the interface between different components, and the integrated performance in stretchability and electrochemistry of supercapacitors based on single-walled carbon nanotube/polyaniline (SWCNT/PANI) composite films on pre-elongated elastomers. Owing to the moderate porosity, the buckled hybrid film avoids the cracking which occurs in conventional stretchable hybrid electrodes, and both a high specific capacitance of 435 F·g-1 and a high strain tolerance of 140% have been achieved. The good SWCNT/PANI interfacial coupling and the reinforced solid electrolyte penetration structure enable the integrated pseudocapacitors to have stretch-resistant interfaces between different units and maintain a high performance under a stretching of 120% elongation, even after 1, 000 cyclic elongations.
Khang, D. Y.; Rogers, J. A.; Lee, H. H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 2008, 19, 1526–1536.
Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.
Kim, D. H.; Rogers, J. A. Stretchable electronics: Materials strategies and devices. Adv. Mater. 2008, 20, 4887–4892.
Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th anniversary article: Chemically modified/doped carbon nanotubes and graphene for optimized nanostructures and nanodevices. Adv. Mater. 2014, 26, 40–67.
Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.
Cai, L.; Li, J. Z.; Luan, P. S.; Dong, H. B.; Zhao, D.; Zhang, Q.; Zhang, X.; Tu, M.; Zeng, Q. S.; Zhou, W. Y. Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv. Funct. Mater. 2012, 22, 5238–5244.
Chun, K. Y.; Oh, Y.; Rho, J.; Ahn, J. H.; Kim, Y. J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857.
Zhang, Y.; Sheehan, C. J.; Zhai, J.; Zou, G.; Luo, H.; Xiong, J.; Zhu, Y. T.; Jia, Q. X. Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 2010, 22, 3027–3031.
Zhu, Y.; Xu, F. Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Adv. Mater. 2012, 24, 1073–1077.
Zu, M.; Li, Q. W.; Wang, G. J.; Byun, J. H.; Chou, T. W. Carbon nanotube fiber based stretchable conductor. Adv. Funct. Mater. 2013, 23, 789–793.
Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499.
Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F. et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 2013, 3, 3038.
Chen, Y.; Xu, Y.; Zhao, K.; Wan, X.; Deng, J.; Yan, W. Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes. Nano Res. 2010, 3, 714–721.
Hu, X. L.; Krull, P.; de Graff, B.; Dowling, K.; Rogers, J. A.; Arora, W. J. Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 2011, 23, 2933–2936.
Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.
Kim, D. H.; Song, J.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA 2008, 105, 18675–18680.
Kubo, M.; Li, X.; Kim, C.; Hashimoto, M.; Wiley, B. J.; Ham, D.; Whitesides, G. M. Stretchable microfluidic radiofrequency antennas. Adv. Mater. 2010, 22, 2749–2752.
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.
Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778.
Niu, Z.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.
Niu, Z.; Liu, L.; Zhang, L.; Shao, Q.; Zhou, W.; Chen, X.; Xie, S. A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater. 2014, 26, 3681–3687.
Niu, Z.; Zhang, L.; Liu, L.; Zhu, B.; Dong, H.; Chen, X. All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.
Niu, Z.; Zhou, W.; Chen, J.; Feng, G.; Li, H.; Ma, W.; Li, J.; Dong, H.; Ren, Y.; Zhao, D. et al. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 2011, 4, 1440–1446.
Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.
Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Highly flexible and all-solid-state paper like polymer supercapacitors. Nano Lett. 2010, 10, 4025–4031.
Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982.
Li, X.; Gu, T. L.; Wei, B. Q. Dynamic and galvanic stability of stretchable supercapacitors. Nano Lett. 2012, 12, 6366–6371.
Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2012, 25, 1058–1064.
Yu, C. J.; Masarapu, C.; Rong, J. P.; Wei, B. Q.; Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv. Mater. 2009, 21, 4793–4797.
Zhao, C.; Wang, C.; Yue, Z.; Shu, K.; Wallace, G. G. Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte. ACS Appl. Mater. Inter. 2013, 5, 9008–9014.
Pasta, M.; La Mantia, F.; Hu, L.; Deshazer, H. D.; Cui, Y. Aqueous supercapacitors on conductive cotton. Nano Res. 2010, 3, 452–458.
Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H. W.; Derin, I.; Steingart, D. A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24, 5071–5076.
Kaltenbrunner, M.; Kettlgruber, G.; Siket, C.; Schwödiauer, R.; Bauer, S. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 2010, 22, 2065–2067.
Lee, H.; Yoo, J. K.; Park, J. H.; Kim, J. H.; Kang, K.; Jung, Y. S. A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: Porosity engineering by controlled phase separation. Adv. Energy Mater. 2012, 2, 976–982.
Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. N. Stretchable organic solar cells. Adv. Mater. 2011, 23, 1771–1775.
Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.
Wang, C. Y.; Zheng, W.; Yue, Z. L.; Too, C. O.; Wallace, G. G. Buckled, stretchable polypyrrole electrodes for battery applications. Adv. Mater. 2011, 23, 3580–3584.
Yue, B. B.; Wang, C. Y.; Ding, X.; Wallace, G. G. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 2012, 68, 18–24.
Jiang, H.; Sun, Y.; Rogers, J. A.; Huang, Y. Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 2007, 90, 133119.
Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 2002, 124, 9034–9035.
Wu, T. M.; Lin, Y. W.; Liao, C. S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 2005, 43, 734–740.
Yang, M.; Koutsos, V.; Zaiser, M. Interactions between polymers and carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 2005, 109, 10009–10014.
Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L. F.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307–2311.
Li, J.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 2002, 106, 9299–9305.
Niu, Z. Q.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D.; Zhou, W. Y.; Xie, S. S. High-strength laminated copper matrix nanocomposites developed from a single-walled carbon nanotube film with continuous reticulate architecture. Adv. Funct. Mater. 2012, 22, 5209–5215.
Niu, Z. Q.; Luan, P. S.; Shao, Q.; Dong, H. B.; Li, J. Z.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W. Y.; Chen, X. D. et al. A "skeleton/skin" strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 8726–8733.
Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 2000, 12, 750–753.
Hu, L. B.; Pasta, M.; La Mantia, F.; Cui, L. F.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.