AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers

Shuai Hou1,2Tao Wen1,2Hui Zhang1,2Wenqi Liu1,2Xiaona Hu1,2Rongyao Wang3( )Zhijian Hu1( )Xiaochun Wu1( )
CAS Key Laboratory of Standardization and Measurement for NanotechnologyNational Center for Nanoscience and TechnologyBeijing100190China
University of the Chinese Academy of SciencesBeijing100049China
School of Physics, Key Laboratory of Cluster Science of Ministry of EducationBeijing Institute of TechnologyBeijing100081China
Show Author Information

Graphical Abstract

Abstract

Generation of circular dichroism (CD) beyond the UV region is of great interest in developing chiral sensors and chiroptical devices. Herein, we demonstrate a simple and versatile method for fabrication of plasmonic oligomers with strong CD response in the visible and near IR spectral range. The oligomers were fabricated by triggering the side-by-side assembly of cysteine-modified gold nanorods. The modified nanorods themselves did not exhibit obvious plasmonic CD signals; however, the oligomers show strong CD bands around the plasmon resonance wavelength. The sign of the CD band was dictated by the chirality of the absorbed cysteine molecules. By adjusting the size of the oligomers, the concentration of chiral molecules, and/or the aspect ratio of the nanorods, the CD intensity and spectral range were readily tunable. Theoretical calculations suggested that CD of the oligomers originated from a slight twist of adjacent nanorods within the oligomer. Therefore, we propose that the adsorbed chiral molecules are able to manipulate the twist angles between the nanorods and thus modulate the CD response of the oligomers.

Electronic Supplementary Material

Download File(s)
12274_2014_530_MOESM1_ESM.pdf (920.3 KB)

References

1

Valev, V. K.; Baumberg, J. J.; Sibilia, C.; Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook. Adv. Mater. 2013, 25, 2517–2534.

2

Guerrero-Martínez, A.; Alonso-Gómez, J. L.; Auguié, B.; Cid, M. M.; Liz-Márzan, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 2011, 6, 381–400.

3

Ben-Moshe, A.; Maoz, B. M.; Govorov, A. O.; Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 2013, 42, 7028–7041.

4

Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787.

5

Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Yin, H. H.; Kuang, H.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 2013, 135, 18629–18636.

6

Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

7

Pendry, J. B. A chiral route to negative refraction. Science 2004, 306, 1353–1355.

8

Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.

9

Hentschel, M.; Schäferling, M.; Weiss, T.; Liu, N.; Giessen, H. Three-dimensional chiral plasmonic oligomers. Nano Lett. 2012, 12, 2542–2547.

10

Lu, F.; Tian, Y.; Liu, M. Z.; Su, D.; Zhang, H.; Gorovov, A.; Gang, O. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 2013, 13, 3145–3151.

11

Slocik, J. M.; Govorov, A. O.; Naik, R. R. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett. 2011, 11, 701–705.

12

Zhu, Z. N.; Liu, W. J.; Li, Z. T.; Han, B.; Zhou, Y. L.; Gao, Y.; Tang, Z. Y. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 2012, 6, 2326–2332.

13

Govorov, A. O.; Fan, Z. Y.; Hernandez, P.; Slocik, J. M.; Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 2010, 10, 1374–1382.

14

Chen, W.; Bian, A.; Agarwal, A.; Liu, L. Q.; Shen, H. B.; Wang, L. B.; Xu, C. L.; Kotov, N. A. Nanoparticle superstructures made by polymerase chain reaction: Collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 2009, 9, 2153–2159.

15

Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

16

Lan, X.; Chen, Z.; Dai, G. L.; Lu, X. X.; Ni, W. H.; Wang, Q. B. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 2013, 135, 11441–11444.

17

Shen, X. B.; Zhan, P. F.; Kuzyk, A.; Liu, Q.; Asenjo-Garcia, A.; Zhang, H.; de Abajo, F. J. G.; Govorov, A.; Ding, B. Q.; Liu, N. 3D plasmonic chiral colloids. Nanoscale 2014, 6, 2077–2081.

18

Wang, R. Y.; Wang, H. L.; Wu, X. C.; Ji, Y. L.; Wang, P.; Qu, Y.; Chung, T. S. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter 2011, 7, 8370–8375.

19

Guerrero-Martínez, A.; Auguié, B.; Alonso-Gómez, J. L.; Džolić, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 2011, 50, 5499–5503.

20

Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 2014, 136, 4788–4793.

21

Jung, S. H.; Jeon, J.; Kim, H.; Jaworski, J.; Jung, J. H. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates. J. Am. Chem. Soc. 2014, 136, 6446–6452.

22

Fan, Z. Y.; Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 2010, 10, 2580–2587.

23

Auguié, B.; Alonso-Gómez, J. L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2011, 2, 846–851.

24

Ma, W.; Kuang, H.; Wang, L. B.; Xu, L. G.; Chang, W. S.; Zhang, H. N.; Sun, M. Z.; Zhu, Y. Y.; Zhao, Y.; Liu, L. Q. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 2013, 3, 1934.

25

Jain, P. K.; Eustis, S.; El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 2006, 110, 18243–18253.

26

Zhang, H.; Govorov, A. O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 2013, 87, 075410.

Nano Research
Pages 1699-1705
Cite this article:
Hou S, Wen T, Zhang H, et al. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Research, 2014, 7(11): 1699-1705. https://doi.org/10.1007/s12274-014-0530-z

635

Views

39

Crossref

N/A

Web of Science

41

Scopus

4

CSCD

Altmetrics

Received: 12 May 2014
Revised: 17 June 2014
Accepted: 29 June 2014
Published: 25 August 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return