AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires

Gui Chen§Xuming Xie§Guozhen Shen( )
State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China

§ G. Chen and X. Xie are visiting students from Huazhong University of Science and Technology. They contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Flexible photodetectors have become a focus of current researches because they may offer some unique applications in various new areas that require flexible, lightweight, and mechanical shock-resistive sensing elements. In this work, we designed flexible organic-inorganic hybrid photodetectors on various flexible substrates, including polyethylene terephthalate (PET), common Sellotape and polydimethylsiloxane (PDMS), with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires (NWs) as the active materials. The as-fabricated hybrid devices exhibited an optimized performance superior to the device made of pristine GaP NWs, with a fast response time (43 ms) and high on/off ratio (~170). Under different bending conditions, the flexible hybrid photodetectors demonstrated excellent flexibility and electrical stability, which make them very promising for further large-scale, high sensitivity and high speed photodetector applications.

Electronic Supplementary Material

Download File(s)
12274_2014_537_MOESM1_ESM.pdf (1.1 MB)

References

1

Weiss, N. O.; Duan, X. F. Building potential for graphene photodetectors. NPG Asia Mater. 2013, 5, e74.

2

Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.

3

Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Razavi, H.; Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. P. Natl. Acad. Sci. USA 2008, 105, 11066–11070.

4

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

5

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detective InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

6

Wang, J.-J.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J. Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors. NPG Asia Mater. 2012, 4, e2.

7

Xue, D.-J.; Wang, J.-J.; Wang, Y.-Q.; Xin, S.; Guo, Y.-G.; Wan, L.-J. Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv. Mater. 2011, 23, 3704–3707.

8

Wang, J.-J.; Wang, Y.-Q.; Cao, F.-F.; Guo, Y.-G.; Wan, L.-J. Synthesis of monodispersed wurtzite structure CuInSe2 nanocrystals and their application in high performance organic-inorganic hybrid photodetectors. J. Am. Chem. Soc. 2010, 132, 12218–12221.

9

An, T. K.; Park, C. E.; Chuang, D. S. Polymer-nanocrystal hybrid photodetectors with planar heterojunctions designed strategically to yield a high photoconductive gain. Appl. Phys. Lett. 2013, 102, 193306.

10

Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowires heterojunction on rigid and flexible substrates. Adv. Funct. Mater. 2013, 9, 1202–1209.

11

Chen, G.; Liang, B.; Liu, X.; Liu, Z.; Yu, G.; Xie, X.; Luo, T.; Chen, D.; Zhu, M. Q.; Shen, G. Z.; et al.; High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano 2014, 8, 787–796.

12

Yoo, J.; Pyo, J.; Je, J. H. Single inorganic-organic hybrid nanowires with ambipolar photoresponse. Nanoscale, 2014, 6, 3557–3560.

13

Lin, H. W.; Liu, H. B.; Qian, X. M.; Lai, S.-W.; Li, Y. J.; Chen, N.; Ouyang, C.; Che, C.-M.; Li, Y. L. Constructing a blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays. Inorg. Chem. 2011, 50, 7749–7753.

14

Dhara, S.; Giri, P. K. ZnO/anthracene based inorganic/organic nanowire heterostructure: Photoresponse and photoluminescence studies. J. Appl. Phys. 2012, 111, 044320.

15

Chen, G.; Liu, Z.; Liang, B.; Yu, G.; Xie, Z.; Huang, H. T.; Liu, B.; Wang, X. F.; Chen, D.; Zhu, M.-Q.; Shen, G. Z. Single-crystalline Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 2681–2690.

16

Chen, Z.-G.; Cheng, L. N.; Lu, G. Q.; Zou, J. Sulfur-doped gallium phosphide nanowires and their optoelectronic properties. Nanotechnology 2010, 21, 375701.

17

Shen, G. Z.; Chen, P.-C.; Bando, Y.; Golberg, D.; Zhou, C. W. Pearl-like ZnS-decorated InP nanowire heterostructures and their electric behaviors. Chem. Mater. 2008, 20, 6779–6783.

18

Peng, H. S.; Jain, M.; Li, Q. W.; Peterson, D. E.; Zhu, Y. T.; Jia, Q. X. Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 2008, 130, 1130–1131.

19

Shen, G. Z.; Bando, Y.; Lee, C.-J. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J. Phys. Chem. B 2005, 109, 10578–10583.

20

Rafiq, M. A.; Durrani, Z. A. K.; Mizuta, H.; Colli, A.; Servati, P.; Ferrari, A. C.; Miline, W. I.; Oda, S. Room temperature single electron charging in single silicon nanochains. J. Appl. Phys. 2008, 103, 053705.

21

Szendrei, K.; Cordella, F.; Kovalenko, M. V.; Boberl, M.; Hesser, G.; Yarama, M.; Jarzab, D.; Mikhnenko, O. V.; Gocalinska, A.; Saba, M.; et al. Solution-processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv. Mater. 2009, 21, 683–687.

22

Liu, Z.; Chen, G.; Liang, B.; Yu, G.; Huang, H. T.; Chen, D.; Shen, G. Z. Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt. Exp. 2013, 21, 7799–7810.

23

Wu, P. C.; Dai, Y.; Ye, Y.; Yin, Y.; Dai, L. Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2 nanowires. J. Mater. Chem. 2011, 21, 2563–2567.

24

Günes, S.; Sariciftci, N. S. Hybrid solar cells. Inorg. Chim. Acta 2008 361, 581–588.

25

Huynh, W. U.; Dittmer, J. J. Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

26

Zhu, H. F.; Li, T.; Zhang, Y. J.; Dong, H. L.; Song, J. S.; Zhao, H. P.; Wei, Z. M.; Xu, W.; Hu, W. P.; Bo, Z. S. High-performance organic nanoscale photoswitches based on nanogap electrodes coated with a blend of poly(3-hexylthiophene) and [6, 6]-phenyl-C61-butyric acid methyl ester. Adv. Mater. 2010, 22, 1645–1648.

27

Taylor, T. R.; Gomez, H.; Asmis, K. R.; Neumark, D. M. Photoelectron spectroscopy of GaX2 -, Ga2X-, and Ga2X3 (X = P, As). J. Chem. Phys. 2001, 115, 4620–4631.

28

Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794.

Nano Research
Pages 1777-1787
Cite this article:
Chen G, Xie X, Shen G. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Research, 2014, 7(12): 1777-1787. https://doi.org/10.1007/s12274-014-0537-5

453

Views

21

Crossref

N/A

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 08 May 2014
Revised: 02 July 2014
Accepted: 07 July 2014
Published: 25 August 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return