Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Encompassing ecological and economic concerns, the utilization of biomass to produce carbonaceous materials has attracted intensive research and industrial interest. Using nitrogen containing precursors could realize an in situ and homogeneous incorporation of nitrogen into the carbonaceous materials with a controlled process. Herein, N-doped hollow core-disordered mesoporous shell carbonaceous nanospheres (HCDMSs) were synthesized from glucosamine hydrochloride (GAH), an applicable carbohydrate-based derivative. The obtained HCDMSs possessed controlled size (~450-50 nm) and shell thickness (~70-10 nm), suitable nitrogen contents (~6.7-4.4 wt.%), and Brunauer-Emmett-Teller (BET) surface areas up to 770 m2·g–1. These materials show excellent electrocatalytic activity as a metal-free catalyst for the oxygen reduction reaction (ORR) in both alkaline and acidic media. Specifically, the prepared HCDMS-1 exhibits a high diffusion-limited current, and superior durability and better immunity towards methanol crossover and CO poisoning for ORR in alkaline solution than a commercial 20 wt.% Pt/C catalyst.
Sun, X.; Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 597–601.
Lu, A. H.; Li, W. C.; Hao, G. P.; Spliethoff, B.; Bongard, H. J.; Schaack, B. B.; Schüth, F. Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem. Int. Ed. 2010, 49, 1615–1618.
White, R. J.; Tauer, K.; Antonietti, M.; Titirici, M. M. Functional hollow carbon nanospheres by latex templating. J. Am. Chem. Soc. 2010, 132, 17360–17363.
Lei, Z. B.; Chen, Z. W.; Zhao, X. S. Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J. Phys. Chem. C. 2010, 114, 19867–19874.
Guo, L.; Zhang, J.; He, Q.; Zhang, L.; Zhao, J.; Zhu, Z.; Wu, W.; Zhang, J.; Shi, J. Preparation of millimetre-sized mesoporous carbon spheres as an effective bilirubin adsorbent and their blood compatibility. Chem. Commun. 2010, 46, 7127–7129.
Lai, X.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.
Schaefer, Z. L.; Gross, M. L.; Hickner, M. A.; Schaak, R. E. Uniform hollow carbon shells: Nanostructured graphitic supports for improved oxygen-reduction catalysis. Angew. Chem. Int. Ed. 2010, 49, 7045–7048.
Kim, J. H.; Yu, J. S. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells. Phys. Chem. Chem. Phys. 2010, 12 15301–15308.
Fang, B. Z.; Kim, J. H.; Lee, C.; Yu, J. S. Hollow macroporous core/mesoporous shell carbon with a tailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J. Phys. Chem. C 2008, 112, 639–645.
Yan, Z.; Meng, H.; Shen, P. K.; Meng, Y.; Ji, H. Effect of the templates on the synthesis of hollow carbon materials as electrocatalyst supports for direct alcohol fuel cells. Int. J. Hydrogen Energy. 2012, 37, 4728–4736.
Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 2011, 50, 5904–5908.
Yang, S.; Feng, X.; Zhi, L.; Cao, Q.; Maier, J.; Müllen, K. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv. Mater. 2010, 22, 838–842.
Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.
Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2012, 6, 38–46.
Han, Y.; Dong, X.; Zhang, C.; Liu, S. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 2012, 211, 92–96.
Guo, L.; Zhang, L.; Zhang, J.; Zhou, J.; He, Q.; Zeng, S.; Cui, X.; Shi, J. Hollow mesoporous carbon spheres-An excellent bilirubin adsorbent. Chem. Commun. 2009, 6071–6073.
Harada, T.; Ikeda, S.; Ng, Y. H.; Sakata, T.; Mori, H.; Torimoto, T.; Matsumura, M. Rhodium nanoparticle encapsulated in a porous carbon shell as an active heterogeneous catalyst for aromatic hydrogenation. Adv. Funct. Mater. 2008, 18, 2190–2196.
Zeng, Y.; Wang, X.; Wang, H.; Dong, Y.; Ma, Y.; Yao, J. Multi-shelled titania hollow spheres fabricated by a hard template strategy: Enhanced photocatalytic activity. Chem. Commun. 2010, 46, 4312–4314.
Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802.
Fuertes, A. B.; Sevilla, M.; Valdes-Solis, T.; Tartaj, P. Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow mesoporous carbon shell. Chem. Mater. 2007, 19, 5418–5423.
Xia, Y.; Mokaya, R. Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 2004, 16, 886–891.
Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 2008, 20, 6562–6566.
Yoon, S. B.; Sohn, K.; Kim, J. Y.; Shin, C. H.; Yu, J. S.; Hyeon, T. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Adv. Mater. 2002, 14, 19–21.
Valle-Vigón, P.; Sevilla, M.; Fuertes, A. B. Synthesis of uniform mesoporous carbon capsules by carbonization of organosilica nanospheres. Chem. Mater. 2010, 22, 2526–2533.
Lu, A. H.; Hao, G. P.; Sun, Q.; Zhang, X. Q.; Li, W. C. Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol. Chem. Phys. 2012, 213, 1107–1131.
Li, S. Y.; Liang, Y. R.; Wu, D. C.; Fu, R. W. Fabrication of bimodal mesoporous carbons from petroleum pitch by a one-step nanocasting method. Carbon 2010, 48, 839–843.
Soll, S.; Fellinger, T. P.; Wang, X.; Zhao, Q.; Antonietti, M.; Yuan, J. Water dispersible, highly graphitic and nitrogen-doped carbon nanobubbles. Small 2013, 9, 4135–4141.
Lu, A. H.; Sun, T.; Li, W. C.; Sun, Q.; Han, F.; Liu, D. H.; Guo, Y. Synthesis of discrete and dispersible hollow carbon nanospheres with high uniformity by using confined nanospace pyrolysis. Angew. Chem. Int. Ed. 2011, 50, 11765–11768.
Yang, M.; Ma, J.; Ding, S. J.; Meng, Z. K.; Liu, J. G.; Zhao, T.; Mao, L. Q.; Shi, Y.; Jin, X. G.; Lu, Y. F.; et al. Phenolic resin and derived carbon hollow spheres. Macromol. Chem. Phys. 2006, 207, 1633–1639.
Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, J.; Ralchenko, V. G. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 1998, 282, 897–901.
Sun, Z.; Liu, Y.; Li, B.; Wei, J.; Wang, M.; Yue, Q.; Deng, Y.; Kaliaguine, S.; Zhao, D. Y. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano 2013, 7, 8706–8714.
Yang, M.; Ma, J.; Zhang, C.; Yang, Z.; Lu, Y. General synthetic route toward functional hollow spheres with double-shelled structures. Angew. Chem. Int. Ed. 2005, 44, 6727–6730.
Tang, C.; Bombalski, L.; Kruk, M.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. Nanoporous carbon films from "hairy" polyacrylonitrile-grafted colloidal silica nanoparticles. Adv. Mater. 2008, 20, 1516–1522.
Kruk, M.; Dufour, B.; Celer, E. B.; Kowalewski, T.; Jaroniec, M.; Matyjaszewski, K. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. J. Phys. Chem. B 2005, 109, 9216–9225.
Xia, Y. D.; Mokaya, R. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv. Mater. 2004, 16, 1553–1558.
Xia, Y. D.; Yang, Z. X.; Mokaya, R. Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. J. Phys. Chem. B 2004, 108, 19293–19298.
Su, F.; Zhao, X. S.; Wang, Y.; Wang, L.; Lee, J. Y. Hollow carbon spheres with a controllable shell structure. J. Mater. Chem. 2006, 16, 4413–4419.
Wang, Y.; Su, F. B.; Lee, J. Y.; Zhao, X. S. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage. Chem. Mater. 2006, 18, 1347–1353.
Chen, X.; Kierzek, K.; Jiang, Z.; Chen, H.; Tang, T.; Wojtoniszak, M.; Kalenczuk, R. J.; Chu, P. K.; Borowiak-Palen, E. Synthesis, growth mechanism, and electrochemical properties of hollow mesoporous carbon spheres with controlled diameter. J. Phys. Chem. C 2011, 115, 17717–17724.
Brun, N.; Wohlgemuth, S. A.; Osiceanu, P.; Titirici, M. M. Original design of nitrogen-doped carbon aerogels from sustainable precursors: Application as metal-free oxygen reduction catalysts. Green Chem. 2013, 15, 2514–2524.
Hu, B.; Wang, K.; Wu, L.; Yu, S. H.; Antonietti, M.; Titirici, M. M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828.
Zhang, P.; Gong, Y.; Li, H.; Chen, Z.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.
Zhang, P.; Yuan, J.; Fellinger, T. P.; Antonietti, M.; Li, H.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem. Int. Ed. 2013, 52, 6028–6032.
Wang, J.; Xu, Z.; Gong, Y. T.; Han, C. L.; Li, H. R.; Wang, Y. One-step production of sulfur and nitrogen co-doped graphitic carbon for oxygen reduction: Activation effect of oxidized sulfur and nitrogen. ChemCatChem. 2014, 6, 1204–1209.
Sun, X.; Li, Y. Hollow carbonaceous capsules from glucose solution. J. Colloid Interface Sci. 2005, 291, 7–12.
Ikeda, S.; Tachi, K.; Ng, Y. H.; Ikoma, Y.; Sakata, T.; Mori, H.; Harada, T.; Matsumura, M. Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls. Chem. Commun. 2007, 4335–4340.
Hampsey, J. E.; Hu, Q.; Rice, L.; Pang, J.; Wu, Z.; Lu, Y. A general approach towards hierarchical porous carbon particles. Chem. Commun. 2005, 3606–3608.
Kubo, S.; White, R. J.; Yoshizawa, N.; Antonietti, M.; M., T. M. Ordered carbohydrate-derived porous carbons. Chem. Mater. 2011, 23, 4882–4885.
Cui, X.; Antonietti, M.; Yu, S. H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 2006, 2, 756–759.
Titirici, M. M.; Thomas, A.; Antonietti, M. Replication and coating of silica templates by hydrothermal carbonization. Adv. Funct. Mater. 2007, 17, 1010–1018.
Kubo, S.; Tan, I.; White, R. J.; Antonietti, M.; Titirici, M. M. Template synthesis of carbonaceous tubular nanostructures with tunable surface properties. Chem. Mater. 2010, 22, 6590–6597.
Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions. Adv. Mater. 2012, 24, 2037–2041.
Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89.
Paraknowitsch, J. P.; Zhang, J.; Su, D.; Thomas, A.; Antonietti, M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 2010, 22, 87–92.
Shao, Y. Y.; Sui, J. H.; Yin, G. P.; Gao, Y. Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl. Catal. B: Environ. 2008, 79, 89–99.
Xu, X.; Li, Y.; Gong, Y.; Zhang, P.; Li, H.; Wang, Y. Synthesis of palladium nanoparticles supported on mesoporous N-doped carbon and their catalytic ability for biofuel upgrade. J. Am. Chem. Soc. 2012, 134, 16987–16990.
Han, C. L.; Wang, J.; Gong, Y. T.; Xu, X.; Li, H.; Wang, Y. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2014, 2, 605–609.
Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.
Stöber, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.
Kim, J. H.; Yoon, S. B.; Kim, J. Y.; Chae, Y. B.; Yu, J. S. Synthesis of monodisperse silica spheres with solid core and mesoporous shell: Morphological control of mesopores. Colloids Surf. A: Physicochem. Eng. Aspects 2008, 313–314, 77–81.
Yang, W.; Fellinger, T. P.; Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 2011, 133, 206–209.