Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723–773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.
Ajayan, P. M.; Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 1993, 361, 333–334.
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
Smith, B. W.; Monthioux, M.; Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 1998, 396, 323–324.
Hirahara, K.; Bandow, S.; Suenaga, K.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. Electron diffraction study of one-dimensional crystals of fullerenes. Phys. Rev. B 2001, 64, 115420.
Wang, Z. Y.; Zhao, K. K.; Li, H.; Liu, Z.; Shi, Z. J.; Liu, J.; Suenaga, K.; Joung, S. K.; Okazaki, T.; Jin, Z. X.; et al. Ultra-narrow WS2 nanoribbons encapsulated in carbon nanotubes. J. Mater. Chem. 2011, 21, 171–180.
Hirahra, K.; Suenaga, K.; Bandow, S.; Kato, H.; Okazaki, T.; Shinohara, H.; Iijima, S. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 5384–5387.
Kitaura, R.; Nakanishi, R.; Saito, T.; Yoshikawa, H.; Awaga, K.; Shinohara, H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew. Chem. Int. Ed. 2009, 48, 8298–8302.
Kitaura, R.; Imazu, N.; Kobayashi, K.; Shinohara, H. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett. 2008, 8, 693–699.
Kitaura, R.; Shinohara, H. Carbon-nanotube-based hybrid materials: Nanopeapods. Chem. Asian J. 2006, 1, 646–655.
Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.
Shimada, T.; Okazaki, T.; Taniguchi, R.; Sugai, T.; Shinohara, H.; Suenaga, K.; Ohno, Y.; Mizuno, S.; Kishimoto, S.; Mizutani, T. Ambipolar field-effect transistor behavior of Gd@C82 metallofullerene peapods. Appl. Phys. Lett. 2002, 81, 4067–4069.
Choi, D. H.; Wang, Q.; Azuma, Y.; Majima, Y.; Warner, J. H.; Miyata, Y.; Shinohara, H.; Kitaura, R. Fabrication and characterization of fully flattened carbon nanotubes: A new graphene nanoribbon analogue. Sci. Rep. 2013, 3, 1617.
Kim, K.; Lee, Z.; Malone, B. D.; Chan, K. T.; Alemán, B.; Regan, W.; Gannett, W.; Crommie, M. F.; Cohen, M. L.; Zettl, A. Multiply folded graphene. Phys. Rev. B 2011, 83, 245433.
Suenaga, K.; Sandré, E.; Colliex, C.; Pickard, C. J.; Kataura, H.; Iijima, S. Electron energy-loss spectroscopy of electron states in isolated carbon nanostructures. Phys. Rev. B 2001, 63, 165408.
Cowley, J. M.; Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 1957, 10, 609–619.
Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 2004, 92, 095501.
Zhang, C. G.; Bets, K.; Lee, S. S.; Sun, Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Tour, J. M.; Hauge, R. H. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 2012, 6, 6023–6032.