AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Field-effect passivation on silicon nanowire solar cells

Anna Dalmau Mallorquí1Esther Alarcón-Lladó1Ignasi Canales Mundet1Amirreza Kiani1Bénédicte Demaurex2Stefaan De Wolf2Andreas Menzel3Margrit Zacharias3Anna Fontcuberta i Morral1( )
Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale deLausanne 1015 Lausanne, Switzerland
Photovoltaics and Thin Film Electronics LaboratoryInstitute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne2000Neuchâtel, Switzerland
NanotechnologyInstitute of Microsystems Engineering (IMTEK)Albert-Ludwigs-University79110Freiburg, Germany
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Surface recombination represents a handicap for high-efficiency solar cells. This is especially important for nanowire array solar cells, where the surface-to-volume ratio is greatly enhanced. Here, the effect of different passivation materials on the effective recombination and on the device performance is experimentally analyzed. Our solar cells are large area top-down axial n-p junction silicon nanowires fabricated by means of Near-Field Phase-Shift Lithography (NF-PSL). We report an efficiency of 9.9% for the best cell, passivated with a SiO2/SiNx stack. The impact of the presence of a surface fixed charge density at the silicon/oxide interface is studied.

Electronic Supplementary Material

Download File(s)
12274_2014_551_MOESM1_ESM.pdf (677.2 KB)

References

1

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.

2

Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 2010, 9, 239-244.

3

Polman, A.; Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174-177.

4

Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148-154.

5

Cui, Y. C.; Wang, J.; Plissard, S. R.; Cavalli, A.; Vu, T. T. T.; van Veldhoven, R. P. J.; Gao, L.; Trainor, M.; Verheijen, M. A.; Haverkort, J. E. M. et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett. 2013, 13, 4113-4117.

6

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Aberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057-1060.

7

Krogstrup, P.; Jørgensen, H. I.; Heiss, M.; Demichel, O.; Holm, J. V.; Aagesen, M.; Nygard, J.; Fontcuberta i Morral, A. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 2013, 7, 306-310.

8

Yu, L. W.; Misra, S.; Wang, J. Z.; Qian, S. Y.; Foldyna, M.; Xu, J.; Shi, Y.; Johnson, E.; Roca i Cabarrocas, P. Understanding light harvesting in radial junction amorphous silicon thin film solar cells. Sci. Rep. 2014, 4, 4357.

9

Fernández-Serra, M. V.; Adessi, C.; Blase, X. Conductance, surface traps, and passivation in doped silicon nanowires. Nano Lett. 2006, 6, 2674-2678.

10

Dan, Y. P.; Seo, K.; Takei, K.; Meza, J. H.; Javey, A.; Crozier, K. B. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 2011, 11, 2527-2532.

11

Demichel, O.; Heiss, M.; Bleuse, J.; Mariette, H.; Fontcuberta i Morral, A. Impact of surfaces on the optical properties of GaAs nanowires. Appl. Phys. Lett. 2010, 97, 201907.

12

Joyce, H. J.; Wong-Leung, J.; Yong, C. K.; Docherty, C. J.; Paiman, S.; Gao, Q.; Tana, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M. et al. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 2012, 12, 5325-5330.

13

Holm, J. V.; Jørgensen, H. I.; Krogstrup, P.; Nygård, J.; Liu, H. Y.; Aagensen, M. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon. Nat. Commun. 2013, 4, 1498.

14

Kim, D. R.; Lee, C. H.; Rao, P. M.; Cho, I. S.; Zheng, X. L. Hybrid Si microwire and planar solar cells: Passivation and characterization. Nano Lett. 2011, 11, 2704-2708.

15

Yu, S. Q.; Roemer, F.; Witzigmann, B. Analysis of surface recombination in nanowire array solar cells. J. Photon. Energy 2012, 2, 028002.

16

Deal, B. E.; Grove, A. S. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 1965, 36, 3770-3778.

17

Zhao, J. H.; Wang, A. H.; Green, M. A.; Ferrazza, F. 19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73, 1991-1993.

18

Hoex, B.; Peeters, F. J. J.; Creatore, M.; Blauw, M. A.; Kessels, W. M. M.; van de Sanden, M. C. M. High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon. J. Vac. Sci. Technol. A 2006, 24, 1823-1830.

19

Lauinger, T.; Schmidt, J.; Aberle, A. G.; Hezel, R. Record low surface recombination velocities on 1 Ω·cm p-silicon using remote plasma silicon nitride passivation. Appl. Phys. Lett. 1996, 68, 1232-1234.

20

Aberle, A. G.; Hezel, R. Progress in low-temperature surface passivation of silicon solar cells using remote-plasma silicon nitride. Prog. Photovolt. Res. Appl. 1997, 5, 29-50.

21

Wolf, S. D.; Agostinelli, G.; Beaucarne, G.; Vitanov, P. Influence of stoichiometry of direct plasma-enhanced chemical vapor deposited SiNx films and silicon substrate surface roughness on surface passivation. J. Appl. Phys. 2005, 97, 063303.

22

Agostinelli, G.; Delabie, A.; Vitanov, P.; Alexieva, Z.; Dekkers, H. F. W.; Wolf, S. D.; Beaucarne, G. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Sol. Energy Mat. Sol. Cells 2006, 90, 3438-3443.

23

Hoex, B.; Heil, S. B. S.; Langereis, E.; van de Sanden, M. C. M.; Kessels, W. M. M. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 2006, 89, 042112.

24

Hoex, B.; Gielis, J. J. H.; van de Sanden, M. C. M.; Kessels, W. M. M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J. Appl. Phys. 2008, 104, 113703.

25

Chen, Z.; Sana, P.; Salami, J.; Rohatgi, A. A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells. IEEE Trans. Electron. Devices 1993, 40, 1161-1165.

26

Güder, F.; Yang, Y.; Krüger, M.; Stevens, G. B.; Zacharias, M. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication. ACS Appl. Mater. Interfaces 2010, 2, 3473-3478.

27

Subannajui, K.; Güder, F.; Zacharias, M. Bringing order to the world of nanowire devices by phase shift lithography. Nano Lett. 2011, 11, 3513-3518.

28

Wang, F.; Weaver, K. E.; Lakhtakia, A.; Horn, M. W. Electromagnetic modeling of near-field phase-shifting contact lithographywith broadband ultraviolet illumination. Optik 2005, 116, 1-9.

29

Sinton, R. A.; Cuevas, A. Contactless determination of current-voltage characteristics and minority carrier lifetimes in semiconductors from quasi-steady-state photoconductance data. Appl. Phys. Lett. 1996, 69, 2510-2512.

30
PVEducation. General properties of silicon. http://pveducation.org/pvcdrom/materials/general-properties-of-silicon (accessed Oct 7, 2013).
31

Lanford, W. A.; Rand, M. J. The hydrogen content of plasma-deposited silicon nitride. J. Appl. Phys. 1978, 49, 2473-2477.

32

Mäckel, H.; Lüdemann, R. Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation. J. Appl. Phys. 2002, 92, 2602-2609.

33

Reed, M. L.; Plummer, J. D. Chemistry of Si-SiO2 interface trap annealing. J. Appl. Phys. 1988, 63, 5776-5793.

34

Dingemans, G.; Mandoc, M. M.; Bordihn, S.; van de Sanden, M. C. M.; Kessels, W. M. M. Effective passivation of Si surfaces by plasma deposited SiOx/a-SiNx: H stacks. Appl. Phys. Lett. 2011, 98, 222102.

35

Mawhinney, D. B.; Glass Jr., J. A.; Yates Jr., J. T. FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 1997, 101, 1202-1206.

36

Matsunaga, K.; Tanaka, T.; Yamamoto, T.; Ikuhara, Y. First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 2003, 68, 085110.

37

Hang, Q. L.; Wang, F. D.; Buhro, W. E.; Janes, D. B. Ambipolar conduction in transistors using solution grown InAs nanowires with Cd doping. Appl. Phys. Lett. 2007, 90, 062108.

38

Weis, K.; Wirths, S.; Winden, A.; Sladek, K.; Hardtdegen, H.; Lüth, H.; Grützmacher, D.; Schäpers, T. Quantum dots in InAs nanowires induced by surface potential fluctuations. Nanotechnology 2014, 25, 135203.

39
nextnano3. http://www.nextnano.com/nextnano3/index.htm (accessed Sep 11, 2013).
40

Oskooi, A. F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J. D.; Johnson, S. G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 2010, 181, 687-702.

Nano Research
Pages 673-681
Cite this article:
Mallorquí AD, Alarcón-Lladó E, Mundet IC, et al. Field-effect passivation on silicon nanowire solar cells. Nano Research, 2015, 8(2): 673-681. https://doi.org/10.1007/s12274-014-0551-7

665

Views

69

Crossref

N/A

Web of Science

72

Scopus

3

CSCD

Altmetrics

Received: 25 May 2014
Revised: 07 July 2014
Accepted: 31 July 2014
Published: 11 September 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return