AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High power triboelectric nanogenerator based on printed circuit board (PCB) technology

Changbao Han1,§Chi Zhang1,§Wei Tang1Xiaohui Li1Zhong Lin Wang1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Harvesting mechanical energy from our surroundings to acquire a steady and high power output has attracted intensive interest due to the fast development of portable electronics. In this work, the disk-structured triboelectric nanogenerator (TENG) was prepared based on the mature printed circuit board (PCB) technology and the composite structure for effectively improving the utilization in space. A narrow grating of 1° was designed to produce high output. Operated at a rotation rate of 1, 000 rpm, the TENG produces a high output power density of 267 mW/cm2 (total power output of 25.7 W) at a matched load of 0.93 MΩ. After introducing a transformer, the output power can be managed so that it can be directly used to charge a battery for a smart phone. With the PCB production technology, fabrication of high performance TENG at low cost and large-scale becomes feasible.

Electronic Supplementary Material

Download File(s)
12274_2014_555_MOESM1_ESM.pdf (959.8 KB)

References

1

Paradiso, J. A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervas. Comput. 2005, 4, 18–27.

2

Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532–543.

3

Alvarado, U.; Juanicorena, A.; Adin, I.; Sedano, B.; Gutiérrez, I.; de Nó, J. Energy harvesting technologies for low-power electronics. Trans. Emerg. Telecommun. Technol. 2012, 23, 728–741.

4

Bose, B. K. The past, present, and future of power electronics[guest introduction]. IEEE Ind. Electron. M. 2009, 3, 7–11, 14.

5

Martinez-Garcia, S.; Dede-Garcia, E. J.; Campo-Rodriguez, J. C.; Bradley, P. J.; Rueda-Boldo, P.; Monteso-Fernandez, S.; Cagigal-Olay, C.; Vela-Garcia, R. Present and future of the power electronics (I). Introduction and high-power applications. Dyna 2010, 85, 315–330.

6

Liu, H. C.; Zhang, S. S.; Kobayashi, T.; Chen, T.; Lee, C. Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb(Zr0.52, Ti0.48)O3 microcantilever. Micro & Nano Lett. 2014, 9, 286–289.

7

Kiriakidis, G.; Kortidis, I.; Cronin, S. D.; Morris, N. J.; Cairns, D. R.; Sierros, K. A. Tribological investigation of piezoelectric ZnO films for rolling contact-based energy harvesting and sensing applications. Thin Solid Films 2014, 555, 68–75.

8

Zhang, Z.; Liao, Q. L.; Yan, X. Q.; Wang, Z. L.; Wang, W. D.; Sun, X.; Lin, P.; Huang, Y. H.; Zhang, Y. Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res. 2014, 7, 190–198.

9

Zhang, X. H.; Fang, J. L.; Meng, F. F.; Wei, X. L. A novel self-powered wireless sensor node based on energy harvesting for mechanical vibration monitoring. Math. Probl. Eng. 2014, 2014, 642365.

10

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self- powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

11

Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

12

Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59–65.

13

Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

14

Hu, Y. F.; Yang, J.; Jing, Q. S.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 2013, 7, 10424–10432.

15

Hou, T. C.; Yang, Y.; Zhang, H. L.; Chen, J.; Chen, L. J.; Wang, Z. L. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2013, 2, 856–862.

16

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

17

Fan, F. R.; Tang, W.; Yao, Y.; Luo, J. J.; Zhang, C.; Wang, Z. L. Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 2014, 25, 135402.

18

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric- effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

19

Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

20

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

21

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

22

Zhang, C.; Zhou, T.; Tang, W.; Han, C. B.; Zhang, L. M.; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.

23

Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788–3796.

24

Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836–3842.

25

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

26

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

27

Ji, P.; Wan, Y. F. Planning for printed circuit board assembly: The state-of-the-art review. Int. J. Comput. Appl. Technol. 2001, 14, 136–144.

28

LaDou, J. Printed circuit board industry. Int. J. Hyg. Environ. Health 2006, 209, 211–219.

29

Bonner, R. F.; Asselta, J. A.; Haining, F. W. Advanced printed-circuit board design for high-performance computer- applications. IBM J. Res. Dev. 1982, 26, 297–305.

30

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

31

Bains, N.; Geraghty, K.; Goosey, M. New technologies for a sustainable printed circuit board manufacturing process. Circuit World 2006, 32, 19–24.

32

Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.

Nano Research
Pages 722-730
Cite this article:
Han C, Zhang C, Tang W, et al. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Research, 2015, 8(3): 722-730. https://doi.org/10.1007/s12274-014-0555-3

622

Views

158

Crossref

N/A

Web of Science

153

Scopus

10

CSCD

Altmetrics

Received: 15 July 2014
Revised: 30 July 2014
Accepted: 01 August 2014
Published: 10 September 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return