AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission

Kenan Zhang1,2Yun Zhang1Tianning Zhang1Wenjing Dong1Tiaoxing Wei1Yan Sun1Xin Chen1( )Guozhen Shen2( )Ning Dai1
National Laboratory for Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesShanghai200083China
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
Show Author Information

Graphical Abstract

Abstract

Hybrid structures composed of layered materials have received much attention due to their exceptional tunable optical, electronic and catalytic properties. Here, we describe a hydrothermal strategy for coupling vertical ZnO nanorods on MoS2 monolayers without a catalyst. These vapor-solid-grown MoS2 monolayers aid in growing vertical ZnO nanorods via epitaxy. Enhanced Raman and photoluminescence emissions were observed from the MoS2 monolayers under the ZnO nanorods in these coupled structures, which was attributed to the light antenna effect of the ZnO nanorods. These hybrid and incorporation protocols for layered materials will provide new perspectives and opportunities for promoting the construction of heterojunctions with adjustable layered structures leading to fascinating fundamental phenomena and advanced devices.

Electronic Supplementary Material

Download File(s)
12274_2014_557_MOESM1_ESM.pdf (1.3 MB)

References

1

Yankowitz, M.; Wang, J. I. J.; Birdwell, A. G.; Chen, Y. A.; Watanabe, K.; Taniguchi, T.; Jacquod, P.; San-Jose, P.; Jarillo-Herrero, P.; LeRoy, B. J. Electric field control of soliton motion and stacking in trilayer graphene. Nat. Mater. 2014, 13, 786–789.

2

Radisavljevic, B.; Kis, A. Mobility engineering and a metal- insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

3

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

4

Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

5

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

6

Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

7

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

8

Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.

9

Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

10

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

11

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

12

Mohseni, P. K.; Behnam, A.; Wood, J. D.; English, C. D.; Lyding, J. W.; Pop, E.; Li, X. L. InxGa1–xAs nanowire growth on graphene: van der Waals epitaxy induced phase segregation. Nano Lett. 2013, 13, 1153–1161.

13

Kim, Y. J.; Lee, J. H.; Yi, G. C. Vertically aligned ZnO nanostructures grown on graphene layers. Appl. Phys. Lett. 2009, 95, 213101.

14

Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

15

Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.

16

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. G.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

17

Mohseni, P. K.; Lawson, G.; Couteau, C.; Weihs, G.; Adronov, A.; LaPierre, R. R. Growth and characterization of GaAs nanowires on carbon nanotube composite films: Toward flexible nanodevices. Nano Lett. 2008, 8, 4075–4080.

18

Djurišić, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961.

19

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

20

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721.

21

Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.

22

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

23

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

24

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

25

Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

26

Chuang, L. C.; Moewe, M.; Chase, C.; Kobayashi, N. P.; Chang-Hasnain, C.; Crankshaw, S. Critical diameter for Ⅲ–Ⅴ nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 2007, 90, 043115.

27

Ertekin, E.; Greaney, P. A.; Chrzan, D. C.; Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 2005, 97, 114325.

28

Zervos, M.; Feiner, L. F. Electronic structure of piezoelectric double-barrier InAs/InP/InAs/InP/InAs (111) nanowires. J. Appl. Phys. 2004, 95, 281–291.

29

Hosseini Shokouh, S. H.; Pezeshki, A.; Raza, S. R. A.; Choi, K.; Min, S. W.; Jeon, P. J.; Lee, H. S.; Im, S. Molybdenum disulfide nanoflake–zinc oxide nanowire hybrid photoinverter. ACS Nano 2014, 8, 5174–5181.

30

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

31

Chang, K.; Chen, W. X. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47, 4252–4254.

32

Shuford, K. L.; Ratner, M. A.; Gray, S. K.; Schatz, G. C. Finite-difference time-domain studies of light transmission through nanohole structures. Appl. Phys. B 2006, 84, 11–18.

33

Chang, C. C.; Sharma, Y. D.; Kim, Y. S.; Bur, J. A.; Shenoi, R. V.; Krishna, S.; Huang, D. H.; Lin, S. Y. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett. 2010, 10, 1704–1709.

Nano Research
Pages 743-750
Cite this article:
Zhang K, Zhang Y, Zhang T, et al. Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Research, 2015, 8(3): 743-750. https://doi.org/10.1007/s12274-014-0557-1

666

Views

51

Crossref

N/A

Web of Science

50

Scopus

1

CSCD

Altmetrics

Received: 14 June 2014
Revised: 03 August 2014
Accepted: 06 August 2014
Published: 17 September 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return