Graphical Abstract

Mesoporous silica nanoparticles (MSNs) have attracted tremendous attention in recent years as drug delivery carriers due to their large surface areas, tunable sizes, facile modification and considerable biocompatibility. In this work, we fabricate an interesting type of MSNs which are intrinsically doped with photosensitizing molecules, chlorin e6 (Ce6). By increasing the amount of Ce6 doped inside the silica matrix, it is found that the morphology of MSNs changes from spheres to rod-like shapes. The obtained Ce6-doped mesoporous silica nanorods (CMSNRs) are not only able to produce singlet oxygen for photodynamic therapy, but can also serve as a drug delivery platform with high drug loading capacity by utilizing their mesoporous structure. Compared to spherical nanoparticles, it is found that CMSNRs with a larger aspect ratio show much faster uptake by cancer cells. With doxorubicin (DOX) employed as a model drug, the combined photodynamic and chemotherapy is carried out, achieving synergistic anti-tumor effects both in vitro and in vivo. Our study presents a new design of an MSN-based drug delivery platform, which intrinsically is fluorescent and able to serve as a photodynamic agent, promising for future imaging-guided combination therapy of cancer.
Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.
Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.
Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core–shell gold nanocages@ mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013, 25, 3030–3037.
Zhang, F.; Braun, G. B.; Pallaoro, A.; Zhang, Y. C.; Shi, Y. F.; Cui, D. X.; Moskovits, M.; Zhao, D. Y.; Stucky, G. D. Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy. Nano Lett. 2011, 12, 61–67.
Luo, Z.; Hu, Y.; Xin, R. L.; Zhang, B. L.; Li, J. H.; Ding, X. W.; Hou, Y. H.; Yang, L.; Cai, K. Y. Surface functionalized mesoporous silica nanoparticles with natural proteins for reduced immunotoxicity. J. Biomed. Mater. Res. A 2013, in press, DOI: 10.1002/jbm.a.35049.
Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Delivery Rev. 2010, 62, 1064–1079.
Wang, L.; Zhao, W. J.; Tan, W. H. Bioconjugated silica nanoparticles: Development and applications. Nano Res. 2008, 1, 99–115.
Estévez, M. C.; O'Donoghue, M. B.; Chen, X. L.; Tan, W. L. Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res. 2009, 2, 448–461.
Huang, C. M.; Cheng, S. H.; Jeng, U. S.; Yang, C. S.; Lo, L. W. Formation of CdSe/CdS/ZnS–Au/SiO2 dual–yolk/shell nanostructures through a Trojan-type inside–out etching strategy. Nano Res. 2012, 5, 654–666.
Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.
Qian, R. C.; Ding, L.; Ju, H. X. Switchable fluorescent imaging of intracellular telomerase activity using telomerase- responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285.
Sreejith, S.; Ma, X.; Zhao, Y. L. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J. Am. Chem. Soc. 2012, 134, 17346–17349.
Fan, W. P.; Shen, B.; Bu, W. B.; Chen, F.; Zhao, K. L.; Zhang, S. J.; Zhou, L. P.; Peng, W. J.; Xiao, Q. F.; Xing, H. Y. et al. Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/ luminescent dual-mode imaging. J. Am. Chem. Soc. 2013, 135, 6494–6503.
Chen, F.; Hong, H.; Zhang, Y.; Valdovinos, H. F.; Shi, S. X.; Kwon, G. S.; Theuer, C. P.; Barnhart, T. E.; Cai, W. B. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 2013, 7, 9027–9039.
Shi, S. X.; Chen, F.; Cai, W. B. Biomedical applications of functionalized hollow mesoporous silica nanoparticles: Focusing on molecular imaging. Nanomedicine 2013, 8, 2027–2039.
Fang, W. J.; Yang, J.; Gong, J. W.; Zheng, N. F. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 2012, 22, 842–848.
Gao, Y.; Chen, Y.; Ji, X. F.; He, X. Y.; Yin, Q.; Zhang, Z. W.; Shi, J. L.; Li, Y. P. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell–pore sizes of mesoporous silica nanoparticles. ACS Nano 2011, 5, 9788–9798.
Lee, C. H.; Cheng, S. H.; Huang, I. P.; Souris, J. S.; Yang, C. S.; Mou, C. Y.; Lo, L. W. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. 2010, 49, 8214–8219.
Zhao, Y.; Lin, L. N.; Lu, Y.; Chen, S. F.; Dong, L.; Yu, S. H. Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. Adv. Mater. 2010, 22, 5255–5259.
Ma, X.; Sreejith, S.; Zhao, Y. L. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 12860–12868.
Luo, Z.; Cai, K. Y.; Hu, Y.; Zhao, L.; Liu, P.; Duan, L.; Yang, W. H. Mesoporous silica nanoparticles end-capped with collagen: Redox-responsive nanoreservoirs for targeted drug delivery. Angew. Chem. Int. Ed. 2011, 50, 640–643.
Kim, M. H.; Na, H. K.; Kim, Y. K.; Ryoo, S. R.; Cho, H. S.; Lee, K. E.; Jeon, H.; Ryoo, R.; Min, D. H. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 2011, 5, 3568–3576.
Suwalski, A.; Dabboue, H.; Delalande, A.; Bensamoun, S. F.; Canon, F.; Midoux, P.; Saillant, G.; Klatzmann, D.; Salvetat, J. P.; Pichon, C. Accelerated achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials 2010, 31, 5237–5245.
Li, Z. W.; Wang, C.; Cheng, L.; Gong, H.; Yin, S. N.; Gong, Q. F.; Li, Y. G.; Liu, Z. PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials 2013, 34, 9160–9170.
Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145– 6154.
Cakmak, Y.; Kolemen, S.; Duman, S.; Dede, Y.; Dolen, Y.; Kilic, B.; Kostereli, Z.; Yildirim, L. T.; Dogan, A. L.; Guc, D. et al. Designing excited states: Theory-guided access to efficient photosensitizers for photodynamic action. Angew. Chem. Int. Ed. 2011, 50, 11937–11941.
Park, S. Y.; Baik, H. J.; Oh, Y. T.; Oh, K. T.; Youn, Y. S.; Lee, E. S. A smart polysaccharide/drug conjugate for photodynamic therapy. Angew. Chem. Int. Ed. 2011, 50, 1644–1647.
Huang, P.; Lin, J.; Wang, S. J.; Zhou, Z. J.; Li, Z. M.; Wang, Z.; Zhang, C. L.; Yue, X. Y.; Niu, G.; Yang, M. et al. Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 2013, 34, 4643–4654.
Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.
Meng, H.; Liong, M.; Xia, T.; Li, Z. X.; Ji, Z. X.; Zink, J. I.; Nel, A. E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539–4550.
Chen, Y. W.; Chen, P. J.; Hu, S. H.; Chen, I. W.; Chen, S. Y. NIR-triggered synergic photo-chemothermal therapy delivered by reduced graphene oxide/carbon/mesoporous silica nanocookies. Adv. Funct. Mater. 2014, 24, 451–459.
Couleaud, P.; Morosini, V.; Frochot, C.; Richeter, S.; Raehm, L.; Durand, J. O. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2010, 2, 1083–1095.
Wang, T. T.; Zhang, L. Y.; Su, Z. M.; Wang, C. G.; Liao, Y.; Fu, Q. Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Appl. Mater. Interfaces 2011, 3, 2479–2486.
He, Q. J.; Shi, J. L. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2014, 26, 391–411.
Lee, J.; Park, J.; Singha, K.; Kim, W. J. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker. Chem. Commun. 2013, 49, 1545–1547.
Hayashi, K.; Nakamura, M.; Ishimura, K. Silica–porphyrin hybrid nanotubes for in vivo cell tracking by near-infrared fluorescence imaging. Chem. Commun. 2012, 48, 3830– 3832.
Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Ishimura, K. Near-infrared fluorescent silica/porphyrin hybrid nanorings for in vivo cancer imaging. Adv. Funct. Mater. 2012, 22, 3539–3546.
Rossi, L. M.; Silva, P. R.; Vono, L. L. R.; Fernandes, A. U.; Tada, D. B.; Baptista, M. S. Protoporphyrin IX nanoparticle carrier: Preparation, optical properties, and singlet oxygen generation. Langmuir 2008, 24, 12534–12538.
Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: Potential cancer theranostics. J. Mater. Chem. 2009, 19, 1252–1257.
Tu, H. L.; Lin, Y. S.; Lin, H. Y.; Hung, Y.; Lo, L. W.; Chen, Y. F.; Mou, C. Y. In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv. Mater. 2009, 21, 172–177.
Zhang, R. R.; Wu, C. L.; Tong, L. L.; Tang, B.; Xu, Q. H. Multifunctional core–shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir 2009, 25, 10153–10158.
Meng, H.; Yang, S.; Li, Z. X.; Xia, T.; Chen, J.; Ji, Z. X.; Zhang, H. Y.; Wang, X.; Lin, S. J.; Huang, C. et al. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 2011, 5, 4434–4447.
Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448.
Hassan, M.; Klaunberg, B. A. Biomedical applications of fluorescence imaging in vivo. Comparative Med. 2004, 54, 635–644.
Zhu, Z.; Tang, Z. W.; Phillips, J. A.; Yang, R. H.; Wang, H.; Tan, W. H. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 10856–10857.