Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Multilayer MoS2 is a promising active material for sensing, energy harvesting, and optoelectronic devices owing to its intriguing tunable electronic band structure. However, its optoelectronic applications have been limited due to its indirect band gap nature. In this study, we fabricated a new type of phototransistor using multilayer MoS2 crystal hybridized with p-type organic semiconducting rubrene patches. Owing to the outstanding photophysical properties of rubrene, the device characteristics such as charge mobility and photoresponsivity were considerably enhanced to an extent depending on the thickness of the rubrene patches. The enhanced photoresponsive conductance was analyzed in terms of the charge transfer doping effect, validated by the results of the nanoscale laser confocal microscope photoluminescence (PL) and time-resolved PL measurements.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.
Lembke, D.; Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 2012, 6, 10070– 10075.
Wang, H.; Yu, L.; Lee, Y. H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.
Brivio, J.; Alexander, D. T. L.; Kis, A. Ripples and layers in ultrathin MoS2 membranes. Nano Lett. 2011, 11, 5148–5153.
Li, H.; Yin, Z.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.
Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.
Gourmelon, E.; Lignier, O.; Hadouda, H.; Couturier, G.; Bernède, J. C.; Tedd, J.; Pouzet, J.; Salardenne, J. MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 1997, 46, 115–121.
Buscema, M.; Barkelid, M.; Zwiller, V.; Van Der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712.
Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High- mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434–4441.
Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High- detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836.
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.
Lin, M. W.; Liu, L.; Lan, Q.; Tan, X.; Dhindsa, K. S.; Zeng, P.; Naik, V. M.; Cheng, M. M. C.; Zhou, Z. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D: Appl. Phys. 2012, 45, 345102.
Cho, M. Y.; Kim, S. J.; Han, Y. D.; Park, D. H.; Kim, K. H.; Choi, D. H.; Joo, J. Highly sensitive, photocontrolled, organic thin-film transistors using soluble star-shaped conjugated molecules. Adv. Funct. Mater. 2012, 18, 2905–2912.
Kang, H. S.; Lee, J. W.; Kim, M. K.; Joo, J.; Ko, J. M.; Lee, J. Y. Electrical characteristics of pentacene-based thin film transistor with conducting poly(3, 4-ethylenedioxythiophene) electrodes. J. Appl. Phys. 2006, 100, 064508.
Cho, E. H.; Kim, B. G.; Jun, S.; Lee, J.; Park, D. H.; Lee, K. S.; Kim, J.; Kim, J.; Joo, J. Remote biosensing with polychromatic optical waveguide using blue light-emitting organic nanowires hybridized with quantum dots. Adv. Funct. Mater. 2014, 24, 3684–3691.
Peumans, P.; Uchida, S.; Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular- weight organic thin films. Nature 2003, 425, 158–162.
Gommans, H.; Schols, S.; Kadashchuk, A.; Heremans, P.; Meskers, S. C. J. Exciton diffusion length and lifetime in subphthalocyanine films. J. Phys. Chem. C 2009, 113, 2974–2979.
Mönch, W. Valence-band offsets and Schottky barrier heights of layered semiconductors explained by interface-induced gap states. Appl. Phys. Lett. , 1998, 72, 1899.
Sillen, A.; Engelborghs, Y. The correct use of "average" fluorescence parameters. Photochem. Photobiol. 1998, 67, 475–486.
Najafov, H.; Lee, B.; Zhou, Q.; Feldman, L. C.; Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 2010, 9, 938– 943.
Müller, A. M.; Avlasevich, Y. S.; Müllen, K.; Bardeen, C. J. Evidence for exciton fission and fusion in a covalently linked tetracene dimer. Chem. Phys. Lett. 2006, 421, 518–522.
Kim, J. H.; Yun, S. W.; An, B. K.; Han, Y. D.; Yoon, S. J.; Joo, J.; Park, S. Y. Remarkable mobility increase and threshold voltage reduction in organic field-effect transistors by overlaying discontinuous nano-patches of charge-transfer doping layer on top of semiconducting film. Adv. Mater. 2013, 25, 719–724.
Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 2007, 107, 1233–1271.
Qi, Y.; Sajoto, T.; Kröger, M.; Kandabarow, A. M.; Park, W.; Barlow, S.; Kim, E. G.; Wielunski, L.; Feldman, L. C.; Bartynski, R. A. et al. A molybdenum dithiolene complex as p-dopant for hole-transport materials: A multitechnique experimental and theoretical investigation. Chem. Mater. 2009, 22, 524–531.
Shi, Y.; Huang, J. K.; Jin, L.; Hsu, Y. T.; Yu, S. F.; Li, L. J.; Yang, H. Y. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 2013, 3, 1839.
Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.
Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C.; Tan, X.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449–4458.
Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2006, 6, 5635–5641.