AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries

Delai Ye1Chenghua Sun2Yu Chen1Kiyoshi Ozawa3Denisa Hulicova-Jurcakova1Jin Zou4Lianzhou Wang1( )
Nanomaterials CentreSchool of Chemical Engineering and Australian Institute of Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQLD4072Australia
School of ChemistryMonash UniversityClaytonVictoria3800Australia
National Institute for Materials ScienceTsukubaIbaraki305-0047Japan
Centre for Microscopy and Microanalysis and Material EngineeringThe University of QueenslandBrisbaneQLD4072Australia
Show Author Information

Graphical Abstract

Abstract

Li-rich cathode materials have been considered as promising candidates for high-energy lithium ion batteries (LIBs). In this study, we report a new series of Li-rich materials (Li[Li1/3-2x/3Mn2/3-x/3Nix]O2 (0.09 ≤ x ≤ 0.2)) doped with small amounts of Ni as cathode materials in LIBs, which exhibited unusual phenomenon of capacity increase up to tens of cycles due to the continuous activation of the Li2MnO3 phase. Both experimental and computational results indicate that unlike commonly studied Ni-doped Li-rich cathode materials, smaller amounts of Ni doping can promote the stepwise Li2MnO3 activation to obtain increased specific capacity and better cycling capability. In contrast, excessive Ni will over-activate the Li2MnO3 and result in a large capacity loss in the first cycle. The Li1.25Mn0.625Ni0.125O2 material with an optimized content of Ni delivered a superior high capacity of ~280 mAh·g-1 and good cycling stability at room temperature.

Electronic Supplementary Material

Download File(s)
12274_2014_563_MOESM1_ESM.pdf (1.7 MB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

3

Liu, J. Addressing the grand challenges in energy storage. Adv. Funct. Mater. 2013, 23, 924–928.

4

Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.

5

Jeong, G.; Kim, J. G.; Park, M. S.; Seo, M.; Hwang, S. M.; Kim, Y. U.; Kim, Y. J.; Kim, J. H.; Dou, S. X. Core–shell structured silicon nanoparticles@TiO2–x/carbon mesoporous microfiber composite as a safe and high-performance lithium- ion battery anode. ACS Nano 2014, 8, 2977–2985.

6

Kim, J. G.; Shi, D.; Park, M. S.; Jeong, G.; Heo, Y. U.; Seo, M.; Kim, Y. J.; Kim, J. H.; Dou, S. X. Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 2013, 6, 365–372.

7

Luo, B.; Wang, B.; Li, X.; Jia, Y.; Liang, M.; Zhi, L. Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538–3543.

8

Luo, B.; Wang, B.; Liang, M.; Ning, J.; Li, X.; Zhi, L. Reduced graphene oxide-mediated growth of uniform tin- core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv. Mater. 2012, 24, 1405–1409.

9

Wang, H.; Cui, L. F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

10

Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J. Self-assembled TiO2– graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.

11

Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18.

12

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

13

Xiao, X.; Lu, J.; Li, Y. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733–737.

14

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

15

Johnson, C.; Li, N.; Vaughey, J.; Hackney, S.; Thackeray, M. Lithium–manganese oxide electrodes with layered-spinel composite structures xLi2MnO3–(1–x)Li1+yMn2–yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 2005, 7, 528–536.

16

Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 2007, 17, 3112–3125.

17

Bareno, J.; Lei, C.; Wen, J.; Kang, S. H.; Petrov, I.; Abraham, D. Local structure of layered oxide electrode materials for lithium-ion batteries. Adv. Mater. 2010, 22, 1122–1127.

18

Boulineau, A.; Simonin, L.; Colin, J. F. O.; Canévet, E.; Daniel, L.; Patoux, S. B. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle sudied by advanced electron microscopy. Chem. Mater. 2012, 24, 3558–3566.

19

Yu, H.; Shikawa, R.; So, Y. G.; Shibata, N.; Kudo, T.; Zhou, H.; Ikuhara, Y. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 5969–5973.

20

Lu, Z.; Beaulieu, L.; Donaberger, R.; Thomas, C.; Dahn, J. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 2002, 149, A778–A791.

21

Yoon, W. S.; Iannopollo, S.; Grey, C. P.; Carlier, D.; Gorman, J.; Reed, J.; Ceder, G. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2−x)/3Li(1−2x)/3]O2 NMR studies and first principles calculations. Electrochem. Solid-State Lett. 2004, 7, A167– A171.

22

Jiang, J.; Dahn, J. Electrochemical and thermal studies of Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2). Electrochim. Acta 2005, 50, 4778–4783.

23

Park, S. H.; Kang, S. H.; Johnson, C.; Amine, K.; Thackeray, M. Lithium–manganese–nickel–oxide electrodes with integrated layered-spinel structures for lithium batteries. Electrochem. Commun. 2007, 9, 262–268.

24

Lei, C.; Bareno, J.; Wen, J.; Petrov, I.; Kang, S. H.; Abraham, D. Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy. J. Power Sources 2008, 178, 422–433.

25

Fell, C. R.; Carroll, K. J.; Chi, M.; Meng, Y. S. Synthesis– structure–property relations in layered, "Li-excess" oxides electrode materials Li[Li1/3−2x/3NixMn2/3−x/3]O2 (x = 1/3, 1/4, and 1/5). J. Electrochem. Soc. 2010, 157, A1202–A1211.

26

Gao, M.; Lian, F.; Liu, H.; Tian, C.; Ma, L.; Yang, W. Synthesis and electrochemical performance of long lifespan Li-rich Li1+x(Ni0.37Mn0.63)1−xO2 cathode materials for lithium- ion batteries. Electrochim. Acta 2013, 95, 87–94.

27

Jarvis, K. A.; Wang, C. C.; Manthiram, A.; Ferreira, P. J. The role of composition in the atomic structure, oxygen loss, and capacity of layered Li–Mn–Ni oxide cathodes. J. Mater. Chem. A 2014, 2, 1353–1362.

28

Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 2011, 4, 2223–2233.

29

Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li1.2Ni0.2Mn0.6O2. J. Am. Chem. Soc. 2006, 128, 8694–8698.

30

Schougaard, S. B.; Bréger, J.; Jiang, M.; Grey, C. P.; Goodenough, J. B. LiNi0.5+δMn0.5–δO2—A high-rate, high- capacity cathode for lithium rechargeable batteries. Adv. Mater. 2006, 18, 905–909.

31

Lu, Z.; Chen, Z.; Dahn, J. Lack of cation clustering in Li[NixLi1/3–2x/3Mn2/3–x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1–x)/3Mn(2–2x)/3]O2 (0 < x < 1). Chem. Mater. 2003, 15, 3214–3220.

32

Meng, Y.; Ceder, G.; Grey, C.; Yoon, W. S.; Jiang, M.; Breger, J.; Shao-Horn, Y. Cation ordering in layered O3 Li[NixLi1/3–2x/3Mn2/3–x/3]O2 (0 ≤ x ≤ 1/2) compounds. Chem. Mater. 2005, 17, 2386–2394.

33

Lu, Z.; MacNeil, D.; Dahn, J. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A191–A194.

34

Lu, Z.; Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 2002, 149, A815–A822.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

36

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

37

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

38

Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943–954.

39

Chevrier, V. L.; Ong, S. P.; Armiento, R.; Chan, M. K.; Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 2010, 82, 075122.

40

Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G. Phase transitions in the LiNi0.5Mn0.5O2 system with temperature. Chem. Mater. 2007, 19, 1790–1800.

41

Kang, S. H.; Kempgens, P.; Greenbaum, S.; Kropf, A.; Amine, K.; Thackeray, M. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x≤ 0.5). J. Mater. Chem. 2007, 17, 2069–2077.

42

Bréger, J.; Jiang, M.; Dupré, N.; Meng, Y. S.; Shao-Horn, Y.; Ceder, G.; Grey, C. P. High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 2005, 178, 2575–2585.

43

Jarvis, K. A.; Deng, Z.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater. 2011, 23, 3614–3621.

44

He, X.; Wang, J.; Kloepsch, R.; Krueger, S.; Jia, H.; Liu, H.; Vortmann, B.; Li, J. Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Res. 2014, 7, 110–118.

45

Shi, S.; Tu, J.; Zhang, Y.; Zhang, Y.; Gu, C.; Wang, X. Morphology and electrochemical performance of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources. Electrochim. Acta 2013, 109, 828–834.

46

Shi, S.; Lou, Z.; Xia, T.; Wang, X.; Gu, C.; Tu, J. Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. J. Power Sources 2014, 257, 198–204.

47

Denis, Y.; Yanagida, K.; Kato, Y.; Nakamura, H. Electrochemical activities in Li2MnO3. J. Electrochem. Soc. 2009, 156, A417–A424.

48

Robertson, A. D.; Bruce, P. G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 2003, 15, 1984–1992.

49

Wang, R.; He, X.; He, L.; Wang, F.; Xiao, R.; Gu, L.; Li, H.; Chen, L. Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv. Energy Mater. 2013, 3, 1358–1367.

50

Sun, Y. K.; Lee, M. J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel–manganese oxide electrodes for Li-ion batteries. Adv. Mater. 2012, 24, 1192–1196.

51

van Bommel, A.; Krause, L.; Dahn, J. Investigation of the irreversible capacity loss in the lithium-rich oxide Li[Li1/5Ni1/5Mn3/5]O2. J. Electrochem. Soc. 2011, 158, A731–A735.

52

Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

53

Ohzuku, T.; Nagayama, M.; Tsuji, K.; Ariyoshi, K. High- capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mAh·g–1. J. Mater. Chem. 2011, 21, 10179–10188.

54

Lee, H. J.; Park, Y. J. Synthesis of Li[Ni0.2Li0.2Mn0.6]O2 nano-particles and their surface modification using a polydopamine layer. J. Power Sources 2013, 244, 222–233.

55

Ye, D.; Ozawa, K.; Wang, B.; Hulicova-Jurcakova, D.; Zou, J.; Sun, C.; Wang, L. Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy 2014, 6, 92–102.

56

Croy, J. R.; Kim, D.; Balasubramanian, M.; Gallagher, K.; Kang, S. H.; Thackeray, M. M. Countering the voltage decay in high capacity xLi2MnO3·(1–x)LiMO2 electrodes (M = Mn, Ni, Co) for Li+-ion batteries. J. Electrochem. Soc. 2012, 159, A781–A790.

57

Martha, S. K.; Nanda, J.; Veith, G. M.; Dudney, N. J. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 2012, 199, 220–226.

58

Lee, E. S.; Manthiram, A. Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J. Mater. Chem. A 2014, 2, 3932–3939.

59

Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Chen, Z.; Ren, Y.; Kim, D.; Kang, S. H.; Dees, D. W.; Thackeray, M. M. Examining hysteresis in composite xLi2MnO3·(1–x)LiMO2 cathode structures. J. Phys. Chem. C 2013, 117, 6525–6536.

60

Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2012, 7, 760–767.

61

Toprakci, O.; Toprakci, H. A.; Li, Y.; Ji, L.; Xue, L.; Lee, H.; Zhang, S.; Zhang, X. Synthesis and characterization of xLi2MnO3·(1–x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J. Power Sources 2013, 241, 522–528.

62

Dong, X.; Xu, Y.; Xiong, L.; Sun, X.; Zhang, Z. Sodium substitution for partial lithium to significantly enhance the cycling stability of Li2MnO3 cathode material. J. Power Sources 2013, 243, 78–87.

63

Rana, J.; Stan, M.; Kloepsch, R.; Li, J.; Schumacher, G.; Welter, E.; Zizak, I.; Banhart, J.; Winter, M. Structural changes in Li2MnO3 cathode material for Li-ion batteries. Adv. Energy Mater. 2014, 4, 1300998.

64

Lee, K. T.; Jeong, S.; Cho, J. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 2012, 46, 1161–1170.

65

Park, K. S.; Benayad, A.; Park, M. S.; Choi, W.; Im, D. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VOx-impregnated 0.5Li2MnO3– 0.5LiNi0.4Co0.2Mn0.4O2 cathode. Chem. Commun. 2010, 46, 4190–4192.

Nano Research
Pages 808-820
Cite this article:
Ye D, Sun C, Chen Y, et al. Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries. Nano Research, 2015, 8(3): 808-820. https://doi.org/10.1007/s12274-014-0563-3

773

Views

27

Crossref

N/A

Web of Science

28

Scopus

2

CSCD

Altmetrics

Received: 11 June 2014
Revised: 03 August 2014
Accepted: 16 August 2014
Published: 20 September 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return