AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies

Ling ZhangWenzhong Wang( )Dong JiangErping GaoSongmei Sun
State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of Ceramics, Chinese Academy of SciencesShanghai200050China
Show Author Information

Graphical Abstract

Abstract

CO2 photoreduction by semiconductors is of growing interest. Fabrication of oxygen-deficient surfaces is an important strategy for enhancing CO2 photoreduction activity. However, regeneration of the oxygen vacancies in photocatalysts is still a problem since an oxygen vacancy will be filled up by the O atom from CO2 after the dissociation process. Herein, we have fabricated highly efficient BiOCl nanoplates with photoinduced oxygen vacancies. Oxygen vacancies were easily regenerated by light irradiation due to the high oxygen atom density and low Bi-O bond energy even when the oxygen vacancies had been filled up by the O atom in the photocatalytic reactions. These oxygen vacancies not only enhanced the trapping capability for CO2, but also enhanced the efficiency of separation of electron-hole pairs, which resulted in the photocatalytic CO2 reduction under simulated solar light. Furthermore, the generation and recovery of the defects in the BiOCl could be realized during the photocatalytic reduction of CO2 in water. The existence of photoinduced defects in thin BiOCl nanoplates undoubtedly leads to new possibilities for the design of solar-driven bismuth based photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2014_564_MOESM1_ESM.pdf (1.4 MB)

References

1

Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365-2387.

2

Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621-6658.

3

Izumi, Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 2013, 257, 171-186.

4

Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817-1828.

5

Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276-11281.

6

Mahmodi, G.; Sharifnia, S.; Rahimpour, F.; Hosseini, S. N. Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization. Sol. Energy Mater. Sol. Cell. 2013, 111, 31-40.

7

Gokon, N.; Hasegawa, N.; Kaneko, H.; Aoki, H.; Tamaura, Y.; Kitamura, M. Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry. Sol. Energy Mater. Sol. Cell. 2003, 80, 335-341.

8

Liu, Q.; Zhou, Y.; Tian, Z. P.; Chen, X. Y.; Gao, J.; Zou, Z. G. Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J. Mater. Chem. 2012, 22, 2033-2038.

9

Li, X.; Liu, H. L.; Luo, D. L.; Li, J. T.; Huang, Y.; Li, H. L.; Fang, Y. P.; Xu, Y. H.; Zhu, L. Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 2012, 180, 151-158.

10

Praus, P.; Kozák, O.; Koči, K.; Panáček, A.; Dvorský, R. CdS nanoparticles deposited on montmorillonite: Preparation, characterization and application for photoreduction of carbon dioxide. Colloid Interface Sci. 2011, 360, 574-579.

11

Cheng, H. F.; Huang, B. B.; Liu, Y. Y.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem. Commun. 2012, 48, 9729-9731.

12

Zhou, Y.; Tian, Z. P.; Zhao, Z. Y.; Liu, Q.; Kou, J. H.; Chen, X. Y.; Gao, J.; Yan, S. C.; Zou, Z. G. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 2011, 3, 3594-3601.

13

Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 2009, 11, 210-213.

14

Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863-20868.

15

Liu, C.; Dubois, K. D.; Louis, M. E.; Vorushilov, A. S.; Li, G. H. Photocatalytic CO2 reduction and surface immobilization of a tricarbonyl Re(I) compound modified with amide groups. ACS Catal. 2013, 3, 655-662.

16

Lo, L. T. L.; Lai, S. W.; Yiu, S. M.; Ko, C. C. A new class of highly solvatochromic dicyano rhenate(I) diimine complexes—synthesis, photophysics and photocatalysis. Chem. Commun. 2013, 49, 2311-2313.

17

Morimoto, T.; Tanabe, J.; Sakamoto, K.; Koike, K.; Ishitani, O. Selective H2 and CO production with rhenium(I) biscarbonyl complexes as photocatalyst. Res. Chem. Intermed. 2013, 39, 437-447.

18

Wang, G. M.; Ling, Y. C.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682-6691.

19

Jiao, W.; Wang, L. Z.; Liu, G.; Lu, G. Q.; Cheng, H. M. Hollow anatase TiO2 single crystals and mesocrystals with dominant {101} facets for improved photocatalysis activity and tuned reaction preference. ACS Catal. 2012, 2, 1854-1859.

20

Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2-x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116, 7904-7912.

21

Ye, L. Q.; Deng, K. J.; Xu, F.; Tian, L. H.; Peng, T. Y.; Zan, L. Increasing visible-light absorption for photocatalysis with black BiOCl. Phys. Chem. Chem. Phys. 2012, 14, 82-85.

22

Ye, L. Q.; Zan, L.; Tian, L. H.; Peng, T. Y.; Zhang, J. J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47, 6951-6953.

23

Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem Soc. 2013, 135, 10411-10417.

24

Wang, D. H.; Gao, G. Q.; Zhang, Y. W.; Zhou, L. S.; Xu, A. W.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4, 7780-7785.

25

Weng, S. X.; Chen, B. B.; Xie, L. Y.; Zheng, Z. Y.; Liu, P. Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity. J. Mater. Chem A 2013, 1, 3068-3075.

26

Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem Soc. 2013, 135, 15750-15753.

27

Liu, X. W.; Cao, H. Q.; Yin, J. F. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 2011, 4, 470-482.

28

Zhang, S. M.; Zhang, G. K.; Yu, S. J.; Chen, X. G.; Zhang, X. Y. Efficient photocatalytic removal of contaminant by Bi3NbxTa1-xO7 nanoparticles under visible light irradiation. J. Phys. Chem. C 2009, 113, 20029-20035.

29

Jovalekic, C.; Pavlovic, M.; Osmokrovic, P.; Atanasoska, L. X-ray photoelectron spectroscopy study of Bi4Ti3O12 ferroelectric ceramics. Appl. Phys. Lett. 1998, 72, 1051-1053.

30

Xing, M. Y.; Fang, W. Z.; Nasir, M.; Ma, Y. F.; Zhang, J. L.; Anpo, M. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis. J. Catal. 2013, 297, 236-243.

31

Armelao, L.; Bottaro, G.; Maccato, C.; Tondello, E. Bismuth oxychloride nanoflakes: Interplay between composition-structure and optical properties. Dalton Trans. 2012, 41, 5480-5485.

32

Aiura, Y.; Iga, F.; Nishihara, Y.; Ohnuki, H.; Kato, H. Effect of oxygen vacancies on electronic states of CaVO3-δ and SrVO3-δ: A photoemission study. Phys. Rev. B 1993, 47, 6732-6735.

33

Zhang, X. C.; Zhao, L. J.; Fan, C. M.; Liang, Z. H.; Han, P. D. Effects of oxygen vacancy on the electronic structure and absorption spectra of bismuth oxychloride. Comp. Mater. Sci. 2012, 61, 180-184.

34

Deng, Z. T.; Tang, F. Q.; Muscat, A. J. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology 2008, 19, 295705.

35

Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024-4030.

36

Li, Y. X.; Zang, L.; Li, Y.; Liu, Y.; Liu, C. Y.; Zhang, Y.; He, H. Q.; Wang, C. Y. Photoinduced topotactic growth of bismuth nanoparticles from bulk SrBi2Ta2O9. Chem. Mater. 2013, 25, 2045-2050.

37

Zhang, H. J.; Liu, L.; Zhou, Z. First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs). RSC Adv. 2012, 2, 9224-9229.

38

Tang, J. L.; Zhao, H. P.; Li, G. F.; Lu, Z.; Xiao, S. Q.; Chen, R. Citrate/urea/solvent mediated self-assembly of (BiO)2CO3 hierarchical nanostructures and their associated photocatalytic performance. Ind. Eng. Chem. Res. 2013, 52, 12604-12612.

39

Kwon, Y.; Birdja, Y.; Spanos, I.; Rodriguez, P.; Koper, M. T. M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal. 2012, 2, 759-764.

40

Martins, C. A.; Giz, M. J.; Camara, G. A.; Generation of carbon dioxide from glycerol: Evidences of massive production on polycrystalline platinum. Electrochim. Acta 2011, 56, 4549-4553.

41

Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745-758.

42

Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 2011, 133, 3964-3971.

Nano Research
Pages 821-831
Cite this article:
Zhang L, Wang W, Jiang D, et al. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Research, 2015, 8(3): 821-831. https://doi.org/10.1007/s12274-014-0564-2

951

Views

363

Crossref

N/A

Web of Science

356

Scopus

23

CSCD

Altmetrics

Received: 16 June 2014
Revised: 22 July 2014
Accepted: 16 August 2014
Published: 20 September 2014
© Tsinghua University Press and Springer-Verlag Heidelberg 2014
Return