Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Controlled synthesis of hierarchically assembled titanium dioxide (TiO2) nanostructures is important for practical applications in environmental purification and solar energy conversion. We present here the fabrication of interconnected TiO2 nanotubes as a macroscopic bulk material by using a porous carbon nanotube (CNT) sponge as a template. The basic idea is to uniformly coat an amorphous titania layer onto the CNT surface by the infiltration of a TiO2 precursor into the sponge followed by a subsequent hydrolysis process. After calcination, the CNTs are completely removed and the titania is simultaneously crystallized, which results in a porous macrostructure composed of interconnected anatase TiO2 nanotubes. The TiO2 nanotube macrostructures show comparable photocatalytic activities to commercial products (AEROXIDE TiO2 P25) for the degradation of rhodamine B (RhB). Moreover, the TiO2 nanotube macrostructures can be settled and separated from water within 12 h after photocatalysis, whereas P25 remains suspended in solution after weeks. Thus the TiO2 nanotube macrostructures offer the advantage of easy catalyst separation and recycle and can be a promising candidate for wastewater treatment.
Liu, L.; Liu, H. J.; Zhao, Y. P.; Wang, Y. Q.; Duan, Y. Q.; Gao, G. D.; Ge, M.; Chen, W. Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ. Sci. Technol. 2008, 42, 2342-2348.
Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 2012, 8, 3073-3103.
Dong, W. J.; Cogbill, A.; Zhang, T. R.; Ghosh, S.; Tian, Z. R. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. J. Phys. Chem. B 2006, 110, 16819-16822.
Zhang, S.; Ji, C.Y.; Bian, Z. Q.; Liu, R. H.; Xia, X. Y.; Yun, D. Q.; Zhang, L. H.; Huang, C. H.; Cao, A. Y. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Lett. 2011, 11, 3383-3387.
Zhu, Y. F.; Shi, J. J.; Zhang, Z. Y.; Zhang, C.; Zhang, X. R. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem. 2002, 74, 120-124.
Zheng, K. H.; Meng, F. B.; Jiang, L.; Yan, Q. Y.; Hng, H. H.; Chen, X. D. Visible photoresponse of single-layer graphene decorated with TiO2 nanoparticles. Small 2013, 9, 2076-2080.
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
Qiu, J. J.; Yu, W. D.; Gao, X. D.; Li, X. M. Fabrication and characterization of TiO2 nanotube arrays having nanopores in their walls by double-template-assisted sol-gel. Nanotechnology 2007, 18, 295604.
Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania nanotubes prepared by chemical processing. Adv. Mater. 1999, 11, 1307-1311.
Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Xu, H. F. Large oriented arrays and continuous films and TiO2-based nanotubes. J. Am. Chem. Soc. 2003, 125, 12384-12385.
Ratanatawanate, C.; Chyao, A.; Balkus, K. J. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen. J. Am. Chem. Soc. 2011, 133, 3492-3497.
Macák, J. M.; Tsuchiya, H.; Schmuki, P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew. Chem. Int. Ed. 2005, 44, 2100-2102.
Koh, J. H.; Koh, J. K.; Seo, J. A.; Shin, J. S.; Kim, J. H. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells. Nanotechnology 2011, 22, 365401
Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904-2939.
Liao, J. J.; Lin, S. W.; Zhang, L.; Pan, N. Q.; Cao, X. K.; Li, J. B. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl. Mater. Interfaces 2012, 4, 171-177.
Wang, D. A.; Zhang, L. B.; Lee, W.; Knez, M.; Liu, L. F. Novel three-dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays. Small 2013, 9, 1025-1029.
Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621
Zhang, H. Z.; Banfield, J. F. Polymorphic transformations and particle coarsening in nanocrystalline titania ceramic powders and membranes. J. Phys. Chem. C 2007, 111, 6621-6629.
Sun, Z. Y.; Liu, Z. M.; Han, B. X.; Wang, Y.; Du, J. M.; Xie, Z. L.; Han, G. J. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water. Adv. Mater. 2005, 17, 928-932.
Cong, Y.; Li, X. K.; Qin, Y.; Dong, Z. J.; Yuan, G. M.; Cui, Z. W.; Lai, X. J. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl. Catal., B-Environ. 2011, 107, 128-134.
Zhang, S. S.; Liu, C.; Liu, X. L.; Zhang, H. M.; Liu, P. R.; Zhang, S. Q.; Peng, F.; Zhao, H. J. Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst. Appl. Microbiol. Biotechnol. 2012, 96, 1201-1207.
Mamakhel, A.; Tyrsted, C.; Bøjesen, E. D.; Hald, P.; Iversen, B. B. Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method. Cryst. Growth Des. 2013, 13, 4730-4734.
Peng, T. Y.; Zhao, D.; Dai, K.; Shi, W.; Hirao, K. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B 2005, 109, 4947-4952.
Zheng, X. L.; Kuang, Q.; Yan, K. Y.; Qiu, Y. C.; Qiu, J. H.; Yang, S. H. Mesoporous TiO2 single crystals: facile shape-, size-, and phase controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 2013, 5, 11249-11257.