AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-assembled vertically aligned gold nanorod superlattices for ultra-high sensitive detection of molecules

Amey Apte1Prashant Bhaskar1Raja Das2,3Smita Chaturvedi1Pankaj Poddar2,3Sulabha Kulkarni1( )
Indian Institute of Science Education and Research (IISER)Homi Bhabha Road, PashanPune411008India
Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory, PashanPune411008India
Academy of Scientific and Innovative Research (AcSIR)Anusandhan Bhavan, 2 Rafi MargNew Delhi100001India
Show Author Information

Graphical Abstract

Abstract

We show that self-assembled vertically aligned gold nanorod (VA-GNRs) superlattices can serve as probes or substrates for ultra-high sensitive detection of various molecules. D-glucose and 2, 4, 6-trinitrotoluene (TNT) have been chosen as model systems due to their very low Raman cross-sections (5.6 × 10-30 cm2·molecule-1·sr-1 for D-glucose and 4.9 × 10-31 cm2·molecule-1·sr-1 for TNT) to show that the VA-GNR superlattice assembly offers as low as yoctomole sensitivity. Our experiment on mixed samples of bovine serum albumin (BSA) and D-glucose solutions demonstrate sensitivity for the latter, and the possible extension to real samples. Self-assembled superlattices of VA-GNRs were achieved on a silicon wafer by depositing a drop of solvent containing the GNRs and subsequent solvent evaporation in ambient conditions. An additional advantage of the VA-GNR monolayers is their extremely high reproducible morphology accompanied by ultrahigh sensitivity which will be useful in many fields where a very small amount of analyte is available. Moreover the assembly can be reused a number of times after removing the already present molecules. The method of obtaining VA-GNRs is simple, inexpensive and reproducible. With the help of simulations of monolayers and multilayers it has been shown that superlattices can achieve better sensitivity than monolayer assembly of VA-GNRs.

References

1

Germain, M. E.; Knapp, M. J. Optical explosives detection: From color changes to fluorescence turn-on. Chem. Soc. Rev. 2009, 38, 2543-2555.

2

Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433-3458.

3

Salinas, Y.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261-1296.

4

Thomas, S. W.; Joly, G. D.; Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 2007, 107, 1339-1386.

5

Rodríguez-Lorenzo, L.; Alvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; García de Abajo, F. J. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616-4618.

6

Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 2008, 41, 1653-1661.

7

Mathew, A.; Sajanlal, P. R.; Pradeep, T. Selective visual detection of TNT at the sub-zeptomole level. Angew. Chem. Int. Ed. 2012, 51, 9596-9600.

8

Altun, A. O.; Youn, S. K.; Yazdani, N.; Bond, T.; Park, H. G. Metal-dielectric-CNT nanowires for femtomolar chemical detection by surface enhanced Raman spectroscopy. Adv. Mater. 2013, 25, 4431-4436.

9

D. L. Jeanmarie, R. P. V. D. Surface Raman spectroelectrochemistry. Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 1977, 84, 1-20.

10

Albrecht, M. G.; Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, 5215-5217.

11

Herrera, G.; Padilla, A.; Hernandez-Rivera, S. Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials 2013, 3, 158-172.

12

Cao, Y. C.; Jin, R.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536-1540.

13

Khurana, P.; Thatai, S.; Wang, P.; Lihitkar, P.; Zhang, L.; Fang, Y.; Kulkarni, S. K. Speckled SiO2@Au core-shell particles as surface enhanced Raman scattering probes. Plasmonics 2012, 8, 185-191.

14

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392-395.

15

Mahajan, S.; Hutter, T.; Steiner, U.; Goldberg Oppenheimer, P. Tunable microstructured surface-enhanced Raman scattering substrates via electrohydrodynamic lithography. J. Phys. Chem. Lett. 2013, 4, 4153-4159.

16

Wang, Y.; Lu, N.; Wang, W.; Liu, L.; Feng, L.; Zeng, Z.; Li, H.; Xu, W.; Wu, Z.; Hu, W.; et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159-166.

17

Gunnarsson, L.; Bjerneld, E. J.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 2001, 78, 802-804.

18

Huang, X.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880-4910.

19

Tiwari, N.; Yue Liu, M.; Kulkarni, S.; Fang, Y. Study of adsorption behavior of aminothiophenols on gold nanorods using surface-enhanced Raman spectroscopy. J. Nanophotonics 2011, 5, 053513.

20

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.

21

Li, N.; Zhao, P.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 2014, 53, 1756-1789.

22

Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.

23

Jana, N. R. Shape effect in nanoparticle self-assembly. Angew. Chem. Int. Ed. 2004, 43, 1536-1540.

24

Jana, N. R.; Gearheart, L. A.; Obare, S. O.; Johnson, C. J.; Edler, K. J.; Mann, S.; Murphy, C. J. Liquid crystalline assemblies of ordered gold nanorods. J. Mater. Chem. 2002, 12, 2909-2912.

25

Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 2000, 104, 8635-8640.

26

Sau, T. K.; Murphy, C. J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005, 21, 2923-2929.

27

Zhang, H.; Liu, Y.; Yao, D.; Yang, B. Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem. Soc. Rev. 2012, 41, 6066-6088.

28

Peng, B.; Li, G.; Li, D.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993-6000.

29

Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A.; et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 8157-8161.

30

Xie, Y.; Guo, S.; Ji, Y.; Guo, C.; Liu, X.; Chen, Z.; Wu, X.; Liu, Q. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol. Langmuir 2011, 27, 11394-11400.

31

Guerrero-Martínez, A.; Pérez-Juste, J.; Carbó-Argibay, E.; Tardajos, G.; Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 2009, 48, 9484-9488.

32

Xiao, J.; Li, Z.; Ye, X.; Ma, Y.; Qi, L. Self-assembly of gold nanorods into vertically aligned, rectangular microplates with a supercrystalline structure. Nanoscale 2014, 6, 996-1004.

33

Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003, 125, 588-593.

34

Ehlerding, A.; Johansson, I.; Wallin, S.; Östmark, H. Resonance-enhanced Raman spectroscopy on explosives vapor at standoff distances. Int. J. Spectrosc. 2012, 158715.

35

McCreery, R. L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons, Inc. : New York (USA), 2005.

36

Wooten, M.; Shim, J. H.; Gorski, W. Amperometric determination of glucose at conventional vs. nanostructured gold electrodes in neutral solutions. Electroanalysis 2010, 22, 1275-1277.

37

Rahman, M. M.; Ahammad, a. J. S.; Jin, J. -H.; Ahn, S. J.; Lee, J. -J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10, 4855-4886.

38

Claussen, J. C.; Kumar, A.; Jaroch, D. B.; Khawaja, M. H.; Hibbard, A. B.; Porterfield, D. M.; Fisher, T. S. Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Adv. Funct. Mater. 2012, 22, 3399-3405.

39

Yang, X.; Zhang, A.; Wheeler, D.; Bond, T.; Gu, C.; Li, Y. Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber. Anal. Bioanal. Chem. 2012, 402, 687-691.

40

Söderholm, S.; Roos, Y. H.; Meinander, N.; Hotokka, M. Raman spectra of fructose and glucose in the amorphous and crystalline states. J. Raman Spectrosc. 1999, 30, 1009-1018.

41

Yonzon, C. R.; Haynes, C. L.; Zhang, X.; Walsh, J. T.; Van Duyne, R. P. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem. 2003, 76, 78-85.

42

Clarkson, J.; Smith, W. E.; Batchelder, D. N.; Smith, D. A.; Coats, A. M. A theoretical study of the structure and vibrations of 2, 4, 6-trinitrotoluene. J. Mol. Struct. 2003, 648, 203-214.

43

Sun, Y.; Liu, K.; Miao, J.; Wang, Z.; Tian, B.; Zhang, L.; Li, Q.; Fan, S.; Jiang, K. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett. 2010, 10, 1747-1753.

44

Sun, Z.; Ni, W.; Yang, Z.; Kou, X.; Li, L.; Wang, J. pH-Controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4, 1287-1292.

45

Agrawal, R. P.; Sharma, N.; Rathore, M. S.; Gupta, V. B.; Jain, S.; Agarwal, V.; Goyal, S. Noninvasive method for glucose level estimation by saliva. J. Diabetes Metab. 2013, 4, 266.

46

Axelsson, I. Characterization of proteins and other macromolecules by agarose gel chromatography. J. Chromatogr. A 1978, 152, 21-32.

47

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370-4379.

48

Peng, B.; Li, Z.; Mutlugun, E.; Hernandez Martinez, P. L.; Li, D.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q. Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale 2014, 6, 5592-5598.

Nano Research
Pages 907-919
Cite this article:
Apte A, Bhaskar P, Das R, et al. Self-assembled vertically aligned gold nanorod superlattices for ultra-high sensitive detection of molecules. Nano Research, 2015, 8(3): 907-919. https://doi.org/10.1007/s12274-014-0572-2

700

Views

26

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 05 May 2013
Revised: 25 August 2014
Accepted: 26 August 2014
Published: 11 October 2014
© Tsinghua University Press and Springer-Verlag Heidelberg 2014
Return