Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

A colorimetric method for α-glucosidase activity assay and its inhibitor screening based on aggregation of gold nanoparticles induced by specific recognition between phenylenediboronic acid and 4-aminophenyl-α-D-glucopyranoside

Juan Zhang1Ying Liu1Jun Lv1Genxi Li1,2()
Laboratory of Biosensing TechnologySchool of Life Sciences, Shanghai UniversityShanghai200444China
State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biochemistry, Nanjing UniversityNanjing210093China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A colorimetric method has been established for α-glucosidase activity assay and its inhibitor screening. The method is based on the specific recognition between 1, 4-phenylenediboronic acid (PDBA) and 4-aminophenyl-α-D-glucopyranoside (pAPG), which may induce aggregation of pAPG-functionalized gold nanoparticles (AuNPs) to achieve color change of the test solution. Because pAPG is the substrate of α-glucosidase, the aggregation of AuNPs will be influenced by α-glucosidase since there is no coordination reactivity between PDBA and 4-aminobenzene, the hydrolyzed product of pAPG catalyzed by the enzyme. Therefore, a simple and easily-operated colorimetric method for the assay of α-glucosidase activity can be developed. Under the optimized experimental conditions, the ratios of absorbance at a wavelength of 650 nm to that at 520 nm vary linearly with the α-glucosidase activity within a range from 0.05 to 1.1 U/mL with a lowest detection limit of 0.004 U/mL. Moreover, using the proposed method, the inhibition effect of gallic acid and quercetin on α-glucosidase activity can be tested with IC50 values of 1.16 mM and 1.82 μM, respectively. Thus, the method has a great potential not only for the detection of α-glucosidase activity, but also for the screening of its inhibitors.

Electronic Supplementary Material

Download File(s)
12274_2014_573_MOESM1_ESM.pdf (1.1 MB)

References

1

Zhang, B.; Chen, T.; Chen, Z.; Wang, M.; Zheng, D.; Wu, J.; Jiang, X.; Li, X. Synthesis and anti-hyperglycemic activity of hesperidin derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 7194-7197.

2

Shimodaira, M.; Muroya, Y.; Kumagai, N.; Tsuzawa, K.; Honda, K. Effects of short-term intensive glycemic control on insulin, glucagon, and glucagon-like peptide-1 secretion in patients with type 2 diabetes. J. Endocrinol. Invest. 2013, 36, 734-738.

3

Huang, X. C.; Tanaka, K. S. E.; Bennet, A. J. Glucosidase-catalyzed hydrolysis of α-D-glucopyranosyl pyridinium salts: Kinetic evidence for nucleophilic involvement at the glucosidation transition state. J. Am. Chem. Soc. 1997, 119, 11147-11154.

4

Hansawasdi, C.; Kawabata, J. Alpha-glucosidase inhibitory effect of mulberry (morus alba) leaves on CaCo-2. Fitoterapia 2006, 77, 568-573.

5

Puls, W.; Keup, U.; Krause, H. P.; Thomas, G.; Hoffmeister, F. Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 1977, 64, 536-537.

6

Kim, J. H.; Ryu, Y. B.; Kang, N. S.; Lee, B. W.; Heo, J. S.; Jeong, I. Y.; Park, K. H. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol. Pharm. Bull. 2006, 29, 302-305.

7

Li, Y. H.; Wen, S. P.; Kota, B. P.; Peng, G.; Li, G. Q.; Yamahara, J.; Roufogalis, B. D. Punica granatum flower extract, a potent α-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 2005, 99, 239-244.

8

Oki, T.; Matsui, T.; Osajima, Y. Inhibitory effect of α-glucosidase inhibitors varies according to its origin. J. Agric. Food Chem. 1999, 47, 550-553.

9

Matsui, T.; Yoshimoto, C.; Osajima, K.; Oki, T.; Osajima, Y. In vitro survey of α-glucosidase inhibitory food components. Biosci. Biotechnol. Biochem. 1996, 60, 2019-2022.

10

Sawada, Y.; Tsuno, T.; Ueki, T.; Yamamoto, H.; Fukagawa, Y.; Oki, T. Pradimicin Q, a new pradimicin aglycone, with α-glucosidase inhibitory activity. J. Antibiot. 1993, 46, 507-510.

11

Song, G.; Chen, C.; Ren, J.; Qu, X. A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano 2009, 3, 1183-1189.

12

Deng, J.; Jiang, Q.; Wang, Y.; Yang, L.; Yu, P.; Mao, L. Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate ion. Anal. Chem. 2013, 85, 9409-9415.

13

Storhoff, J. J.; Lucas, A. D.; Garimella, V.; Bao, Y. P.; Muller, U. R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 2004, 22, 883-887.

14

Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, 1959-1964.

15

Chen, C.; Zhao, C.; Yang, X.; Ren, J.; Qu, X. Enzymatic manipulation of DNA-modified gold nanoparticles for screening G-quadruplex ligands and evaluating selectivities. Adv. Mater. 2010, 22, 389-393.

16

Pan, B. F.; Ao, L. M.; Gao, F.; Tian, H. Y.; He, R.; Cui, D. X. End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 2005, 16, 1776-1780.

17

Guarise, C.; Pasquato, L.; De Filippis, V.; Scrimin, P. Gold nanoparticles-based protease assay. Proc. Natl. Acad. Sci. USA 2006, 103, 3978-3982.

18

Wang, Z. X.; Levy, R.; Fernig, D. G.; Brust, M. Kinase-catalyzed modification of gold nanoparticles: A new approach to colorimetric kinase activity screening. J. Am. Chem. Soc. 2006, 128, 2214-2215.

19

Xu, X.; Han, M. S.; Mirkin, C. A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew. Chem. Int. Ed. 2007, 46, 3468-3470.

20

Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093-4096.

21

Li, W.; Feng, L.; Ren, J.; Wu, L.; Qu, X. Visual detection of glucose using conformational switch of i-motif DNA and non-crosslinking gold nanoparticles. Chem. Eur. J. 2012, 18, 12637-12642.

22

Yum, K.; Ahn, J. H.; McNicholas, T. P.; Barone, P. W.; Mu, B.; Kim, J. H.; Jain, R. M.; Strano, M. S. Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose. ACS Nano 2012, 6, 819-830.

23

Shoji, E.; Freund, M. S. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J. Am. Chem. Soc. 2002, 124, 12486-12493.

24

Deng, J.; Yu, P.; Yang, L.; Mao, L. Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: Toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients. Anal. Chem. 2013, 85, 2516-2522.

25

Gu, Y. J.; Cheng, J.; Lin, C. C.; Lam, Y. W.; Cheng, S. H.; Wong, W. T. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol. Appl. Pharmacol. 2009, 237, 196-204.

26

Tian, Q.; Zhang, C. N.; Wang, X. H.; Wang, W.; Huang, W.; Cha, R. T.; Wang, C. H.; Yuan, Z.; Liu, M.; Wan, H. Y.; et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010, 31, 4748-4756.

27

Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735-743.

28

Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 2004, 101, 14036-14039.

29

Mader, H. S.; Wolfbeis, O. S. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta 2008, 162, 1-34.

30

Zhu, K.; Zhang, Y.; He, S.; Chen, W.; Shen, J.; Wang, Z.; Jiang, X. Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal. Chem. 2012, 84, 4267-4270.

31

Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185-4191.

32

Kong, B.; Zhu, A.; Luo, Y.; Tian, Y.; Yu, Y.; Shi, G. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem. Int. Ed. 2011, 50, 1837-1840.

33

Cao, A.; Tang, Y.; Liu, Y. Novel fluorescent biosensor for α-glucosidase inhibitor screening based on cationic conjugated polymers. ACS Appl. Mater. Interfaces 2012, 4, 3773-3778.

34

Wan, C.; Yuan, T.; Li, L.; Kandhi, V.; Cech, N. B.; Xie, M.; Seeram, N. P. Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorg. Med. Chem. Lett. 2012, 22, 597-600.

35

Cirillo, G.; Kraemer, K.; Fuessel, S.; Puoci, F.; Curcio, M.; Spizzirri, U. G.; Altimari, I.; Iemma, F. Biological activity of a gallic acid-gelatin conjugate. Biomacromolecules 2010, 11, 3309-3315.

36

Liu, J.; Lu, J. F.; Kan, J.; Jin, C. H. Synthesis of chitosang-allic acid conjugate: Structure characterization and in vitro anti-diabetic potential. Int. J. Biol. Macromol. 2013, 62, 321-329.

37

Yu, Y.; Xu, Y.; Wu, J.; Xiao, G.; Fu, M.; Zhang, Y. Effect of ultra-high pressure homogenisation processing on phenolic compounds, antioxidant capacity and anti-glucosidase of mulberry juice. Food Chem. 2014, 153, 114-120.

38

Li, Y. Q.; Zhou, F. C.; Gao, F.; Bian, J. S.; Shan, F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem. 2009, 57, 11463-11468.

39

Phan, M. A. T.; Wang, J.; Tang, J.; Lee, Y. Z.; Ng, K. Evaluation of α-glucosidase inhibition potential of some flavonoids from epimedium brevicornum. LWT-Food Sci. Technol. 2013, 53, 492-498.

40

Ito, M.; Yoshioka, A.; Imayoshi, Y.; Koriyama, C.; Moriyama, A. Effect of flavonoids on α-glucosidase and β-fructosidase from yeast. Agric. Biol. Chem. 1984, 48, 1559-1563.

Nano Research
Pages 920-930
Cite this article:
Zhang J, Liu Y, Lv J, et al. A colorimetric method for α-glucosidase activity assay and its inhibitor screening based on aggregation of gold nanoparticles induced by specific recognition between phenylenediboronic acid and 4-aminophenyl-α-D-glucopyranoside. Nano Research, 2015, 8(3): 920-930. https://doi.org/10.1007/s12274-014-0573-1
Metrics & Citations  
Article History
Copyright
Return