AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Size-dependent transition of the deformation behavior of Au nanowires

Na-Young Park1,2Ho-Seok Nam1Pil-Ryung Cha1( )Seung-Cheol Lee3( )
School of Advanced Materials EngineeringKookmin UniversitySeoul136-702South Korea
Future Convergence Research DivisionKorea Institute of Science and Technology (KIST)Seoul136-791South Korea
Indo-Korea Science and Technology CenterKorea Institute of Science and Technology (KIST)Seoul136-791South Korea
Show Author Information

Graphical Abstract

Abstract

Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode—slip or twin propagation—of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.

Electronic Supplementary Material

Download File(s)
12274_2014_575_MOESM1_ESM.pdf (1.6 MB)

References

1

Weinberger, C. R.; Cai, W. Plasticity of metal nanowires. J. Mater. Chem. 2012, 22, 3277-3292.

2

Gall, K.; Diao, J. K.; Dunn, M. L. The strength of gold nanowires. Nano Lett. 2004, 4, 2431-2436.

3

Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525-529.

4

Lu, Y.; Song, J.; Huang, J. Y.; Lou, J. Fracture of sub-20 nm ultrathin gold nanowires. Adv. Funct. Mater. 2011, 21 3982-3989.

5

Diao, J. K.; Gall, K.; Dunn, M. L. Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2003, 2, 656-660.

6

Liang, W. W.; Zhou, M.; Ke, F. J. Shape memory effect in Cu nanowires. Nano Lett. 2005, 5, 2039-2043.

7

Park, H. S.; Gall, K.; Zimmerman, J. A. Shape memory and pseudoelasticity in metal nanowires. Phys. Rev. Lett. 2005, 95, 255504.

8

Liang, W. W.; Zhou, M. Atomistic simulations reveal shape memory of FCC metal nanowires. Phys. Rev. B 2006, 73, 115409.

9

Diao, J. K.; Gall, K.; Dunn, M. L. Yield strength asymmetry in metal nanowires. Nano Lett. 2004, 4, 1863-1867.

10

Van Swygenhoven, H.; Derlet, P. M.; Froseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 2004, 3, 399-403.

11

Tadmor, E. B.; Hai, S. A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 2003, 56, 765-793.

12

Park, H. S.; Zimmerman, J. A. Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 2005, 72, 054106.

13

Park, H. S.; Gall, K.; Zimmerman, J. A. Deformation of FCC nanowires by twinning and slip. J. Mech. Phys. Solids 2006, 54, 1862-1881.

14

Seo, J. H.; Yoo, Y.; Park, N. Y.; Yoon, S. Y.; Lee, H.; Han, S.; Lee, S. W.; Seong, T. Y.; Lee, S. C.; Lee, K. B. Superplastic deformation of defect-free Au nanowires via coherent twin propagation. Nano Lett. 2011, 11, 3499-3502.

15

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.

16

Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, 1987.

17

Rabkin, E.; Nam, H. S.; Srolovitz, D. J. Atomistic simulation of the deformation of gold nanopillars. Acta Mater. 2007, 55, 2085-2099.

18

Voter, A. F.; Chen, S. P. Characterization of defects in materials. Mater. Res. Soc. Symp. Proc. 1987, 82, 175.

19

Voter, A. F. Embedded atom method potentials for seven FCC metals: Ni, Pd, Pt, Cu, Ag, Au, and Al; Los Alamos Unclassified Technical Report No. LA-UR 93-3901, 1993.

20

Jennings, A. T.; Weinberger, C. R.; Lee, S. W.; Aitken, Z. H.; Meza, L.; Greer, J. R. Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Mater. 2013, 61, 2244-2259.

21

Ackland, G. J.; Jones, A. P. Applications of local crystal structure measures in experiment and simulation. Phys. Rev. B 2006, 73, 054104.

22

Li, J. AtomEye: An efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 2003, 11, 173-177.

23

Zimmerman, J. A.; Gao, H. J.; Abraham, F. F. Generalized stacking fault energies for embedded atom FCC metals. Model. Simul. Mater. Sci. Eng. 2000, 8, 103-115.

24

Jiang, J. W.; Leach, A. M.; Gall, K.; Park, H. S.; Rabczuk, T. A surface stacking fault energy approach to predicting defect nucleation in surface-dominated nanostructures. J. Mech. Phys. Solids 2013, 61, 1915-1934.

25

Liang, H. Y.; Upmanyu, M.; Huang, H. C. Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B 2005, 71, 241403.

26

Stobbs, W. M.; Sworn, C. H. The weak beam technique as applied to the determination of the stacking-fault energy of copper. Phil. Mag. 1971, 24, 1365-1381.

27

Zhang, W. X.; Wang, T. J.; Chen, X. Effect of surface stress on the asymmetric yield strength of nanowires. J. Appl. Phys. 2008, 103, 123527.

28

Yu, Q.; Shan, Z. W.; Li, J.; Huang, X. X.; Xiao, L.; Sun, J.; Ma, E. Strong crystal size effect on deformation twinning. Nature 2010, 463, 335-338.

Nano Research
Pages 941-947
Cite this article:
Park N-Y, Nam H-S, Cha P-R, et al. Size-dependent transition of the deformation behavior of Au nanowires. Nano Research, 2015, 8(3): 941-947. https://doi.org/10.1007/s12274-014-0575-z

628

Views

16

Crossref

N/A

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 11 June 2014
Revised: 29 August 2014
Accepted: 02 September 2014
Published: 16 October 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return