AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates

Chuhong Zhu1Guowen Meng1,2( )Qing Huang3Xiujuan Wang1Yiwu Qian1Xiaoye Hu1Haibin Tang1Nianqiang Wu4
Key Laboratory of Materials Physicsand Anhui Key Laboratory of Nanomaterials and NanotechnologyInstitute of Solid State PhysicsChinese Academy of SciencesHefei230031China
University of Science and Technology of ChinaHefei230026China
Institute of Technical Biology and Agriculture EngineeringHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031China
Department of Mechanical & Aerospace EngineeringWest Virginia UniversityP.O. Box 6106MorgantownWV26506USA
Show Author Information

Graphical Abstract

Abstract

This paper describes a ZnO-nanotaper array sacrificial templated synthetic approach for the fabrication of the arrays of nanotubes with tube-walls assembled by building-blocks of Ag-nanoplates, Au-nanorods, Pt-nanothorns or Pd-nanopyramids, thus possessing high-density 3D "hot spots" in sub-10-nm gaps of neighboring building blocks with nano-tips, -corners or -edges. Additionally, these hierarchical nanostructure arrays possess high surface area with rich surface chemistry, being beneficial to capturing the analyte. The Ag-nanoplateassembled nanotube arrays can be used as sensitive surface-enhanced Raman scattering (SERS) substrates with good signal uniformity and reproducibility. Using such Ag hierarchical nanostructure arrays as SERS-substrates, not only has 10-14 M rhodamine 6G been identified, but also 10-7 M polychlorinated biphenyls (PCBs, a notorious class of persistent organic pollutants) are recognized, and even two congeners of PCBs can be identified in a mixture, showing the potential applications of the materials in SERS-based rapid detection of environmental organic pollutants.

Electronic Supplementary Material

Download File(s)
12274_2014_577_MOESM1_ESM.pdf (2.6 MB)

References

1

Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry: Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1-20.

2

Haynes, C. L.; Yonzon, C. R.; Zhang, X. Y.; Van Duyne, R. P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471-484.

3

Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2012, 12, 165-171.

4

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392-395.

5

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442-453.

6

Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388-392.

7

Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678-2685.

8

Pedano, M. L.; Li, S. Z.; Schatz, G. C.; Mirkin, C. A. Periodic electric field enhancement along gold rods with nanogaps. Angew. Chem. Int. Ed. 2010, 49, 78-82.

9

Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z. Y.; Gu, B. H. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010, 10, 4952-4955.

10

Lu, Y.; Liu, G. L.; Kim, J.; Mejia, Y. X.; Lee, L. P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 2005, 5, 119-124.

11

Fang, J. X.; Du, S. Y.; Lebedkin, S.; Li, Z. Y.; Kruk, R.; Kappes, M.; Hahn, H. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett. 2010, 10, 5006-5013.

12

Lee, S.; Hahm, M. G.; Vajtai, R.; Hashim, D. P.; Thurakitseree, T.; Chipara, A. C.; Ajayan, P. M.; Hafner, J. H. Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates. Adv. Mater. 2012, 24, 5261-5266.

13

Oh, Y. J.; Jeong, K. H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 2012, 24, 2234-2237.

14

Dawson, P.; Duenas, J. A.; Boyle, M. G.; Doherty, M. D.; Bell, S. E. J.; Kern, A. M.; Martin, O. J. F.; Teh, A. S.; Teo, K. B. K.; Milne, W. I. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett. 2011, 11, 365-371.

15

Altun, A. O.; Youn, S. K.; Yazdani, N.; Bond, T.; Park, H. G. Metal-dielectric-CNT nanowires for femtomolar chemical detection by surface enhanced Raman spectroscopy. Adv. Mater. 2013, 25, 4431-4436.

16

Tang, H. B.; Meng, G. W.; Huang, Q.; Zhang, Z.; Huang, Z. L.; Zhu, C. H. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls. Adv. Funct. Mater. 2012, 22, 218-224.

17

Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Multifunctional Au-coated TiO2nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 2010, 20, 2815-2824.

18

Schmidt, M. S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 2012, 24, OP11-OP18.

19

Jeon, H. C.; Heo, C. J.; Lee, S. Y.; Yang, S. M. Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform. Adv. Funct. Mater. 2012, 22, 4268-4274.

20

Yuan, Q.; Zhang, Y. F.; Chen, Y.; Wang, R. W.; Du, C. L.; Yasun, E.; Tan, W. H. Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors. Proc. Natl. Acad. Sci. USA 2011, 108, 9331-9336.

21

Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452-460.

22

Zeng, J.; Tao, J.; Li, W. Y.; Grant, J.; Wang, P.; Zhu, Y. M.; Xia, Y. N. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions. Chem. Asian J. 2011, 6, 376-379.

23

Zhang, G. X.; Sun, S. H.; Cai, M.; Zhang, Y.; Li, R. Y.; Sun, X. L. Porous dendritic platinum nanotubes with extremely high activity and stability for oxygen reduction reaction. Sci. Rep. 2013, 3, 1526.

24

Choi, B. S.; Lee, Y. W.; Kang, S. W.; Hong, J. W.; Kim, J.; Park, I.; Han, S. W. Multimetallic alloy nanotubes with nanoporous framework. ACS Nano 2012, 6, 5659-5667.

25

Moskovits, M. Surface-enhanced Raman spectroscopy: Abrief retrospective. J. Raman Spectrosc. 2005, 36, 485-496.

26

Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463-9483.

27

Braun, G.; Pavel, I.; Morrill, A. R.; Seferos, D. S.; Bazan, G. C.; Reich, N. O.; Moskovits, M. Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J. Am. Chem. Soc. 2007, 129, 7760-7761.

28

Alexander, K. D.; Skinner, K.; Zhang, S. P.; Wei, H.; Lopez, R. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett. 2010, 10, 4488-4493.

29

Que, R. H.; Shao, M. W.; Zhuo, S. J.; Wen, C. Y.; Wang, S. D.; Lee, S. T. Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly. Adv. Funct. Mater. 2011, 21, 3337-3343.

30

Zhang, L.; Lang, X. Y.; Hirata, A.; Chen, M. W. Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement. ACS Nano 2011, 5, 4407-4413.

31

Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H.; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 2010, 22, 4136-4139.

32
UNEP. UNEP 2007 Annual Report[Online]; UNEP: Nairobi, Kenya, 2008; pp 90-103. http://www.unep.org/PDF/AnnualReport/2007/AnnualReport2007_en_web.pdf (accessed April 16, 2014).
33

Hu, X. Y.; Meng, G. W.; Huang, Q.; Xu, W.; Han, F. M.; Sun, K. X.; Xu, Q. L.; Wang, Z. M. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a twolayered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Nanotechnology 2012, 23, 385705.

34

Zhu, C. H.; Meng, G. W.; Huang, Q.; Zhang, Z.; Xu, Q. L.; Liu, G. Q.; Huang, Z. L.; Chu, Z. Q. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chem. Commun. 2011, 47, 2709-2711.

35

Bantz, K. C.; Haynes, C. L. Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls. Vib. Spectrosc. 2009, 50, 29-35.

36

Liu, P.; Zhang, D. J.; Zhan, J. H. Investigation on the inclusions of PCB52 with cyclodextrins by performing DFT calculations and molecular dynamics simulations. J. Phys. Chem. A 2010, 114, 13122-13128.

37

Yuan, J. P.; Lai, Y. C.; Duan, J. L.; Zhao, Q. Q.; Zhan, J. H. Synthesis of a β-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. J. Colloid Interface Sci. 2012, 365, 122-126.

Nano Research
Pages 957-966
Cite this article:
Zhu C, Meng G, Huang Q, et al. ZnO-nanotaper array sacrificial templated synthesis of noble-metal building-block assembled nanotube arrays as 3D SERS-substrates. Nano Research, 2015, 8(3): 957-966. https://doi.org/10.1007/s12274-014-0577-x

668

Views

62

Crossref

N/A

Web of Science

64

Scopus

2

CSCD

Altmetrics

Received: 16 April 2014
Revised: 05 September 2014
Accepted: 06 September 2014
Published: 10 October 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return