Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The ability to fine-tune band gap and band inversion in topological materials is highly desirable for the development of novel functional devices. Here we propose that the electronic properties of free-standing nanomembranes of the topological crystalline insulators (TCI) SnTe and Pb1-xSnx(Se, Te) are highly tunable by engineering elastic strain and membrane thickness, resulting in tunable band gap and giant piezoconductivity. Membrane thickness governs the hybridization of topological electronic states on opposite surfaces, while elastic strain can further modulate the hybridization strength by controlling the penetration length of surface states. We propose a frequency-resolved infrared photodetector using force-concentration induced inhomogeneous elastic strain in TCI nanomembranes with spatially varying width. The predicted tunable band gap accompanied by strong spin-textured electronic states will open new avenues for fabricating piezoresistive devices, infrared detectors and energy-efficient electronic and spintronic devices based on TCI nanomembrane.
Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.
Qi, X. -L.; Zhang, S. -C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.
Xu, S. -Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H.; et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560-564.
Wu, L.; Brahlek, M.; Valdés Aguilar, R.; Stier, A. V.; Morris, C. M.; Lubashevsky, Y.; Bilbro, L. S.; Bansal, N.; Oh, S.; Armitage, N. P. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1-xInx)2Se3. Nat. Phys. 2013, 9, 410-414.
Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y.; et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584-588.
Kim, D.; Cho, S.; Butch, N. P.; Syers, P.; Kirshenbaum, K.; Adam, S.; Paglione, J.; Fuhrer, M. S. Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat. Phys. 2012, 8, 459-463.
Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 066803.
Xu, S. -Y.; Neupane, M.; Liu, C.; Zhang, D.; Richardella, A.; Andrew Wray, L.; Alidoust, N.; Leandersson, M.; Balasubramanian, T.; Sánchez-Barriga, J.; et al. Hedgehog spin texture and Berry's phase tuning in a magnetic topological insulator. Nat. Phys. 2012, 8, 616-622.
Checkelsky, J. G.; Ye, J.; Onose, Y.; Iwasa, Y.; Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 2012, 8, 729-733.
Chang, C. -Z.; Zhang, J.; Feng, X.; Shen, J.; Zhang, Z.; Guo, M.; Li, K.; Ou, Y.; Wei, P.; Wang, L. -L.; et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167-170.
Wei, P.; Katmis, F.; Assaf, B. A.; Steinberg, H.; Jarillo-Herrero, P.; Heiman, D.; Moodera, J. S. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett. 2013, 110, 186807.
Li, J.; Shan, Z.; Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 2014, 39, 108-114.
Liu, J.; Xu, Y.; Wu, J.; Gu, B. -L.; Zhang, S. B.; Duan, W. Manipulating topological phase transition by strain. Acta Cryst. 2014, C70, 118-122.
Young, S. M.; Chowdhury, S.; Walter, E. J.; Mele, E. J.; Kane, C. L.; Rappe, A. M. Theoretical investigation of the evolution of the topological phase of Bi2Se3 under mechanical strain. Phys. Rev. B 2011, 84, 085106.
Bahramy, M. S.; Yang, B. J.; Arita, R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.
Yang, K.; Setyawan, W.; Wang, S.; Buongiorno Nardelli, M.; Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 2012, 11, 614-619.
Kim, H. -S.; Kim, C. H.; Jeong, H.; Jin, H.; Yu, J. Strain-induced topological insulator phase and effective magnetic interactions in Li2IrO3. Phys. Rev. B 2013, 87, 165117.
Agapito, L. A.; Kioussis, N.; Goddard, W. A., Ⅲ; Ong, N. P. Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys. Rev. Lett. 2013, 110, 176401.
Winterfeld, L.; Agapito, L. A.; Li, J.; Kioussis, N.; Blaha, P.; Chen, Y. P. Strain-induced topological insulator phase transition in HgSe. Phys. Rev. B 2013, 87, 075143.
Zaheer, S.; Young, S. M.; Cellucci, D.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. Spin texture on the Fermi surface of tensile-strained HgTe. Phys. Rev. B 2013, 87, 045202.
Zhang, Q.; Cheng, Y.; Schwingenschlögl, U. Series of topological phase transitions in TiTe2 under strain. Phys. Rev. B 2013, 88, 155317.
Qian, X.; Liu, J.; Fu, L.; Li, J. Quantum spin Hall effect and topological field effect transistor in two-dimensional transition metal dichalcogenides. arXiv: 1406.2749, 2014.
Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802.
Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.
Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800-803.
Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H.; et al. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2012, 11, 1023-1027.
Xu, S. -Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A.; et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nat. Commun. 2012, 3, 1192.
Tanaka, Y.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Ren, Z.; Novak, M.; Segawa, K.; Ando, Y. Tunability of the k-space location of the Dirac cones in the topological crystalline insulator Pb1-xSnxTe. Phys. Rev. B 2013, 87, 155105.
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-B871.
Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-A1138.
Qian, X.; Li, J.; Qi, L.; Wang, C. -Z.; Chan, T. -L.; Yao, Y. -X.; Ho, K. -M.; Yip, S. Quasiatomic orbitals for ab initio tight-binding analysis. Phys. Rev. B 2008, 78, 245112.
Lu, W. C.; Wang, C. Z.; Chan, T. L.; Ruedenberg, K.; Ho, K. M. Representation of electronic structures in crystals in terms of highly localized quasiatomic minimal basis orbitals. Phys. Rev. B 2004, 70, 041101.
Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419-1475.
Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F: Met. Phys. 1984, 14, 1205-1215.
Lopez Sancho, M. P.; Lopez Sancho, J. M.; Rubio, J. Highly convergent schemes for calculation of bulk and surface Green-functions. J. Phys. F: Met. Phys. 1985, 15, 851-858.
Qian, X.; Li, J.; Yip, S. Calculating phase-coherent quantum transport in nanoelectronics with ab initio quasiatomic orbital basis set. Phys. Rev. B 2010, 82, 195442.
Liu, J.; Hsieh, T. H.; Wei, P.; Duan, W.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 2013, 13, 178-183.
Liu, J.; Duan, W.; Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B 2013, 88, 241303(R).
Barone, P.; Di Sante, D.; Picozzi, S. Strain engineering of topological properties in lead-salt semiconductors. Phys. Status Solidi-RRL 2013, 7, 1102-1106.
Feng, J.; Qian, X.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866-872.
Pereira, V. M.; Castro Neto, A. H. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 2009, 103, 046801.
Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.
Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30-33.
Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Castro Neto, A. H.; Crommie, M. F. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544-547.
Nam, D.; Sukhdeo, D. S.; Kang, J. H.; Petykiewicz, J.; Lee, J. H.; Jung, W. S.; Vučković, J.; Brongersma, M. L.; Saraswat, K. C. Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 2013, 13, 3118-3123.
Zhu, T.; Li, J. Ultra-strength materials. Prog. Mater. Sci. 2010, 55, 710-757.
Zhu, T.; Li, J.; Ogata, S.; Yip, S. Mechanics of ultra-strength materials. MRS Bull. 2009, 34, 167-172.
Roberts, M. M.; Klein, L. J.; Savage, D. E.; Slinker, K. A.; Friesen, M.; Celler, G.; Eriksson, M. A.; Lagally, M. G. Elastically relaxed free-standing strained-silicon nanomembranes. Nat. Mater. 2006, 5, 388-393.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 1988, 38, 3098-3100.
Langreth, D. C.; Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic-properties. Phys. Rev. B 1983, 28, 1809-1834.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Zhou, D.; Li, Q.; Ma, Y.; Cui, Q.; Chen, C. Pressure-driven enhancement of topological insulating state in tin telluride. J. Phys. Chem. C 2013, 117, 8437-8442.
Qian, X.; Umari, P.; Marzari, N. Photoelectron properties of DNA and RNA bases from many-body perturbation theory. Phys. Rev. B 2011, 84, 075103.
Umari, P.; Qian, X.; Marzari, N.; Stenuit, G.; Giacomazzi, L.; Baroni, S. Accelerating GW calculations with optimal polarizability basis. Phys. Status Solidi B 2011, 248, 527-536.