AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity

Fei PangXueteng LiuMingyuan HeJianping Ge( )
Department of ChemistryShanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal UniversityShanghai200062China
Show Author Information

Graphical Abstract

Abstract

Cluster-like Ag3PO4 nanostructures including nanoparticles, trisoctahedrons, tetrahedrons and tetrapods have been prepared by the synergetic reaction of Ag nanocrystals, phosphate anions and hydrogen peroxide. The acidity and alkalinity of the reaction solution are tuned to adjust the oxidizing ability of H2O2, and thus control the final morphology. Ag nanocrystals function as a sacrificial precursor, leading to the generation of cluster-like nanostructures. Through a kinetic study, the formation of Ag3PO4 nanocrystal clusters can be understood as the conversion from Ag to Ag3PO4 nanocrystals assisted by H2O2, followed by the oriented attachment of nanocrystals into cluster-like colloids with specific shapes. The as-prepared Ag3PO4 nanostructures have higher photocatalytic activity than commercial TiO2 and some reported Ag3PO4 microcrystals in the degradation of dyes. The catalytic activity decreases in the order nanoparticles > trisoctahedrons > tetrahedrons > tetrapods, while the stability increases in the order nanoparticles < tetrahedrons < trisoctahedrons < tetrapods, which can be explained by the extent of absorption of visible light and structural factors, including size and exposed crystal facets.

Electronic Supplementary Material

Download File(s)
12274_2014_580_MOESM1_ESM.pdf (2 MB)

References

1

Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387-1392.

2

Wu, M. C.; Sápi, A.; Avila, A.; Szabó, M.; Hiltunen, J.; Huuhtanen, M.; Tóth, G.; Kukovecz, Á.; Kónya, Z.; Keiski, R.; et al. Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Res. 2011, 4, 360-369.

3

Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344-3351.

4

Zhou, C.; Shang, L.; Yu, H.; Bian, T.; Wu, L. Z.; Tung, C. H.; Zhang, T. Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal. Today 2014, 225, 158-163.

5

Zhou, C.; Zhao, Y. F.; Bian, T.; Shang, L.; Yu, H. J.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chem. Commun. 2013, 49, 9872-9874.

6

Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559-564.

7

Pasternak, S.; Paz, Y. On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. ChemPhysChem 2013, 14, 2059-2070.

8

Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379-386.

9

Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562-577.

10

Lasek, J.; Yu, Y. H.; Wu, J. C. S. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. C 2013, 14, 29-52.

11

Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509-9549.

12

Xuan, J.; Xiao, W. J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 6828-6838.

13

Kisch, H. Semiconductor photocatalysis-Mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 2013, 52, 812-847.

14

Shiraishi, Y.; Kanazawa, S.; Tsukamoto, D.; Shiro, A.; Sugano, Y.; Hirai, T. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS. Catal. 2013, 3, 2222-2227.

15

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

16

Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568-2580.

17

Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C 2013, 15, 1-20.

18

Huang, G. F.; Ma, Z. L.; Huang, W. Q.; Tian, Y.; Jiao, C.; Yang, Z. M.; Wan, Z.; Pan, A. L. Ag3PO4 semiconductor photocatalyst: Possibilities and challenges. J. Nanomater. 2013, 2013, 1-8.

19

Nebel, C. E. Photocatalysis: A source of energetic electrons. Nat. Mater. 2013, 12, 780-781.

20

Umezawa, N.; Shuxin, O.; Ye, J. Theoretical study of high photocatalytic performance of Ag3PO4. Phys. Rev. B 2011, 83, 035202.

21

Bi, Y. P.; Hu, H. Y.; Ouyang, S. X.; Lu, G. X.; Cao, J. Y.; Ye, J. H. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chem. Commun. 2012, 48, 3748-3750.

22

Dong, P. Y.; Wang, Y. H.; Li, H. H.; Li, H.; Ma, X. L.; Han, L. L. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4 crystals. J. Mater. Chem. A 2013, 1, 4651-4656.

23

Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys. Chem. Chem. Phys. 2011, 13, 10071-10075.

24

Hu, P. F.; Cao, Y. L.; Jia, D. Z.; Li, Q.; Liu, R. L. Engineering the metathesis and oxidation-reduction reaction in solid state at room temperature for nanosynthesis. Sci. Rep. 2014, 4, 04153.

25

Liu, J. K.; Luo, C. X.; Wang, J. D.; Yang, X. H.; Zhong, X. H. Controlled synthesis of silver phosphate crystals with high photocatalytic activity and bacteriostatic activity. CrystEngComm 2012, 14, 8714-8721.

26

Jiao, Z. B.; Zhang, Y.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. Concave trisoctahedral Ag3PO4 microcrystals with high-index facets and enhanced photocatalytic properties. Chem. Commun. 2013, 49, 636-638.

27

Martin, D. J.; Umezawa, N.; Chen, X. M.; Ye, J. H.; Tang, J. W. Facet engineered Ag3PO4 for efficient water photooxidation. Energ. Environ. Sci. 2013, 6, 3380-3386.

28

Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490-6492.

29

Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H.; Bi, Y. P. Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties. J. Mater. Chem. A 2013, 1, 2387-2390.

30

Bi, Y. P.; Hu, H. Y.; Jiao, Z. B.; Yu, H. C.; Lu, G. X.; Ye, J. H. Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. Phys. Chem. Chem. Phys. 2012, 14, 14486-14488.

31

Wang, H.; He, L.; Wang, L. H.; Hu, P. F.; Guo, L.; Han, X. D.; Li, J. H. Facile synthesis of Ag3PO4 tetrapod microcrystals with an increased percentage of exposed {110} facets and highly efficient photocatalytic properties. CrystEngComm 2012, 14, 8342-8344.

32

Wang, J.; Teng, F.; Chen, M. D.; Xu, J. J.; Song, Y. Q.; Zhou, X. L. Facile synthesis of novel Ag3PO4 tetrapods and the {110} facets-dominated photocatalytic activity. CrystEngComm 2013, 15, 39-42.

33

Lou, Z. Z.; Huang, B. B.; Wang, Z. Y.; Zhang, R.; Yang, Y. M.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Fast-generation of Ag3PO4 concave microcrystals from electrochemical oxidation of bulk silver sheet. CrystEngComm 2013, 15, 5070-5075.

34

Liang, Q. H.; Ma, W. J.; Shi, Y.; Li, Z.; Yang, X. M. Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm 2012, 14, 2966-2973.

35

Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chem. Commun. 2011, 47, 7797-7799.

36

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229-251.

37

Hu, Y. X.; Ge, J. P.; Lim, D.; Zhang, T. R.; Yin, Y. D. Size-controlled synthesis of highly water-soluble silver nanocrystals. J. Solid State Chem. 2008, 181, 1524-1529.

Nano Research
Pages 106-116
Cite this article:
Pang F, Liu X, He M, et al. Ag3PO4 colloidal nanocrystal clusters with controllable shape and superior photocatalytic activity. Nano Research, 2015, 8(1): 106-116. https://doi.org/10.1007/s12274-014-0580-2
Part of a topical collection:

800

Views

36

Crossref

N/A

Web of Science

36

Scopus

1

CSCD

Altmetrics

Received: 01 August 2014
Revised: 03 September 2014
Accepted: 06 September 2014
Published: 17 October 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return