AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes

Sangbaek Park1,§Hyun-Woo Shim2,§Chan Woo Lee1Hee Jo Song1Ik Jae Park1Jae-Chan Kim2Kug Sun Hong1Dong-Wan Kim2( )
Department of Materials Science and EngineeringSeoul National UniversitySeoul151-744R. O. Korea
School of CivilEnvironmental and Architectural EngineeringKorea UniversitySeoul136-713R. O. Korea

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Recent efforts have focused on the fabrication and application of three-dimensional (3-D) nanoarchitecture electrodes, which can exhibit excellent electrochemical performance. Herein, a novel strategy towards the design and synthesis of size- and thickness-tunable two-dimensional (2-D) MnO2 nanosheets on highly conductive one-dimensional (1-D) backbone arrays has been developed via a facile, one-step enhanced chemical bath deposition (ECBD) method at a low temperature (~50 ℃). Inclusion of an oxidizing agent, BrO3-, in the solution was crucial in controlling the heterogeneous nucleation and growth of the nanosheets, and in inducing the formation of the tailored and uniformly arranged nanosheet arrays. We fabricated supercapacitor devices based on 3-D MnO2 nanosheets with conductive Sb-doped SnO2 nanobelts as the backbone. They achieved a specific capacitance of 162 F·g-1 at an extremely high current density of 20 A·g-1, and good cycling stability that shows a capacitance retention of ~92% of its initial value, along with a coulombic efficiency of almost 100% after 5, 000 cycles in an aqueous solution of 1 M Na2SO4. The results were attributed to the unique hierarchical structures, which provided a short diffusion path of electrolyte ions by means of the 2-D sheets and direct electrical connections to the current collector by 1-D arrays as well as the prevention of aggregation by virtue of the well-aligned 3-D structure.

Electronic Supplementary Material

Download File(s)
12274_2014_581_MOESM1_ESM.pdf (2.5 MB)

References

1

Zordan, T. A.; Hepler, L. G. Thermochemistry and oxidation potentials of manganese and its compounds. Chem. Rev. 1968, 68, 737-745.

2

Cheng, F. Y.; Zhao, J. Z.; Song, W.; Li, C. S.; Ma, H.; Chen, J.; Shen, P. W. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 2006, 45, 2038-2044.

3

Subramanian, V.; Zhu, H. W.; Wei, B. Q. Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem. Phys. Lett. 2008, 453, 242-249.

4

Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664-2668.

5

Débart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 4597-4600.

6

Li, W. N.; Yuan, J. K.; Shen, X. F.; Gomez-Mower, S.; Xu, L. P.; Sithambaram, S.; Aindow, M.; Suib, S. L. Hydrothermal synthesis of structure-and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. Adv. Funct. Mater. 2006, 16, 1247-1253.

7

Long, J. W.; Rhodes, C. P.; Young, A. L.; Rolison, D. R. Ultrathin, protective coatings of poly (o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes. Nano Lett. 2003, 3, 1155-1161.

8

Luo, X. L.; Morrin, A.; Killard, A. J.; Smyth, M. R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanal. 2006, 18, 319-326.

9

Sayle, T. X.; Maphanga, R. R.; Ngoepe, P. E.; Sayle, D. C. Predicting the electrochemical properties of MnO2 nanomaterials used in rechargeable Li batteries: Simulating nanostructure at the atomistic level. J. Am. Chem. Soc. 2009, 131, 6161-6173.

10

Ghodbane, O.; Pascal, J. L.; Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 2009, 1, 1130-1139.

11

Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366-2375.

12

Brousse, T.; Toupin, M.; Dugas, R.; Athouël, L.; Crosnier, O.; Bélanger, D. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 2006, 153, A2171-A2180.

13

Xu, C. J.; Du, H. D.; Li, B. H.; Kang, F. Y.; Zeng, Y. Q. Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J. Electrochem. Soc. 2009, 156, A435-A441.

14

Xiong, Y. J.; Xie, Y.; Li, Z. Q.; Wu, C. Z. Growth of well-aligned γ-MnO2monocrystalline nanowires through a coordination-polymer-precursor route. Chem. -Eur. J. 2003, 9, 1645-1651.

15

Jones, D. J.; Wortham, E.; Rozière, J.; Favier, F.; Pascal, J. L.; Monconduit, L. Manganese oxide nanocomposites: Preparation and some electrochemical properties. J. Phys. Chem. Solids 2004, 65, 235-239.

16

Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889-3896.

17

Dong, X. P.; Shen, W. H.; Gu, J. L.; Xiong, L. M.; Zhu, Y. F.; Li, Z.; Shi, J. L. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J. Phys. Chem. B 2006, 110, 6015-6019.

18

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174-182.

19

Jiang, H.; Li, C. Z.; Sun, T.; Ma, J. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 2012, 4, 807-812.

20

Lei, Z. B.; Zhang, J. T.; Zhao, X. S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. 2012, 22, 153-160.

21

Zheng, H. J.; Wang, J. X.; Jia, Y.; Ma, C. A. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J. Power Sources 2012, 216, 508-514.

22

Zhou, R. F.; Meng, C. Z.; Zhu, F.; Li, Q. Q.; Liu, C. H.; Fan, S. S.; Jiang, K. L. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology 2010, 21, 345701.

23

Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822-2830.

24

Wu, Z. S.; Ren, W. C.; Wang, D. W.; Li, F.; Liu, B. L.; Cheng, H. M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835-5842.

25

Yu, G. H.; Hu, L. B; Liu, N.; Wang, H. L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438-4442.

26

Gao, H. C.; Xiao, F.; Ching, C. B.; Duan, H. W. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS Appl. Mater. Interfaces 2012, 4, 2801-2810.

27

Mao, L.; Zhang, K.; Chan, H. S. O.; Wu, J. S. Nanostructured MnO2/graphene composites for supercapacitor electrodes: The effect of morphology, crystallinity and composition. J. Mater. Chem. 2012, 22, 1845-1851.

28

Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247-4255.

29

Bao, L. H.; Zang, J. F.; Li, X. D. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 2011, 11, 1215-1220.

30

He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391-400.

31

He, S. J.; Hu, C. X.; Hou, H. Q.; Chen, W. Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J. Power Sources 2014, 246, 754-761.

32

Omomo, Y.; Sasaki, T.; Wang, L. Z.; Watanabe, M. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 2003, 125, 3568-3575.

33

Yang, X. J.; Makita, Y.; Liu, Z. H.; Sakane, K.; Ooi, K. Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals. Chem. Mater. 2004, 16, 5581-5588.

34

Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168-20171.

35

Sun, X.; Li, Q.; Lu, Y. N.; Mao, Y. B. Three-dimensional ZnO@MnO2 core@shell nanostructures for electrochemical energy storage. Chem. Commun. 2013, 49, 4456-4458.

36

Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433-437.

37

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.

38

Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076-2081.

39

Tian, W.; Wang, X.; Zhi, C. Y.; Zhai, T. Y.; Liu, D. Q.; Zhang, C.; Golberg, D.; Bando, Y. Ni(OH)2 nanosheet@Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energ. 2013, 2, 754-763.

40

Yang, Q.; Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, J. Q.; Liu, J. F.; Sun, X. M.; Duan, X. Hierarchical Co3O4 nanosheet@ nanowire arrays with enhanced pseudocapacitive performance. RSC Adv. 2012, 2, 1663-1668.

41

Unuma, H.; Kanehama, T.; Yamamoto, K.; Watanabe, K.; Ogata, T.; Sugawara, M. Preparation of thin films of MnO2 and CeO2 by a modified chemical bath (oxidative-soak-coating) method. J. Mater. Sci. 2003, 38, 255-259.

42

Park, S.; Lee, S.; Seo, S. W.; Seo, S. D.; Lee, C. W.; Kim, D.; Kim, D. W.; Hong, K. S. Tailoring nanobranches in three-dimensional hierarchical rutile heterostructures: A case study of TiO2-SnO2. CrystEngComm 2013, 15, 2939-2948.

43

Park, S.; Seo, S. D.; Lee, S.; Seo, S. W.; Park, K. S.; Lee, C. W.; Kim, D. W.; Hong, K. S. Sb: SnO2@TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes. J. Phys. Chem. C 2012, 116, 21717-21726.

44

Julien, C.; Massot, M.; Rangan, S.; Lemal, M.; Guyomard, D. Study of structural defects in γ-MnO2 by Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 223-228.

45

Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Press: New York, 1999.

46

Devaraj, S.; Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 2008, 112, 4406-4417.

47

Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184-3190.

48

Pang, S. C.; Anderson, M. A.; Chapman, T. W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc. 2000, 147, 444-450.

49

Qu, Q. T.; Zhang, P.; Wang, B.; Chen, Y. H.; Tian, S.; Wu, Y. P.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020-14027.

50

Li, S. H.; Qi, L.; Lu, L. H.; Wang, H. Y. Facile preparation and performance of mesoporous manganese oxide for supercapacitors utilizing neutral aqueous electrolytes. RSC Adv. 2012, 2, 3298-3308.

51

Kim, J. S.; Shin, S. S.; Han, H. S.; Oh, L. S.; Kim, D. H.; Kim, J. H.; Hong, K. S.; Kim, J. Y. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities. ACS Appl. Mater. Interfaces 2014, 6, 268-274.

52

Xie, X. Y.; Zhang, C.; Wu, M. B.; Tao, Y.; Lv, W.; Yang, Q. H. Porous MnO2 for use in a high performance supercapacitor: Replication of a 3D graphene network as a reactive template. Chem. Commun. 2013, 49, 11092-11094.

53

Yeager, M.; Du, W. X.; Si, R.; Su, D.; Marinković, N.; Teng, X. W. Highly efficient K0.15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes. J. Phys. Chem. C 2012, 116, 20173-20181.

54

Li, W. Y.; Liu, Q.; Sun, Y. G.; Sun, J. Q.; Zou, R. J.; Li, G.; Hu, X. H.; Song, G. S.; Ma, G. X.; Yang, J. M. et al. MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. J. Mater. Chem. 2012, 22, 14864-14867.

55

Huang, M.; Zhang, Y. X.; Li, F.; Zhang, L. L.; Ruoff, R. S.; Wen, Z. Y.; Liu, Q. Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci. Rep. 2014, 4, 3878.

56

Xu, C. L.; Zhao, Y. Q.; Yang, G. W.; Li, F. S.; Li, H. L. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem. Commun. 2009, 48, 7575-7577.

57

Feng, Z. P.; Li, G. R.; Zhong, J. H.; Wang, Z. L.; Ou, Y. N.; Tong, Y. X. MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochem. Commun. 2009, 11, 706-710.

58

Subramanian, V.; Zhu, H. W.; Wei, B. Q. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources 2006, 159, 361-364.

59

Xiao, W.; Xia, H.; Fuh, J. Y. H.; Lu, L. Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 2009, 193, 935-938.

60

Xu, M.; Kong, L.; Zhou, W.; Li, H. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 2007, 111, 19141-19147.

61

Jiang, R. R.; Huang, T.; Liu, J. L.; Zhuang, J. H.; Yu, A. S. A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochim. Acta 2009, 54, 3047-3052.

62

Vargas, O. A.; Caballero, A.; Hernán, L.; Morales, J. Improved capacitive properties of layered manganese dioxide grown as nanowires. J. Power Sources 2011, 196, 3350-3354.

63

Sung, D. Y.; Kim, I. Y.; Kim, T. W.; Song, M. S.; Hwang, S. J. Room temperature synthesis routes to the 2D nanoplates and 1D nanowires/nanorods of manganese oxides with highly stable pseudocapacitance behaviors. J. Phys. Chem. C 2011, 115, 13171-13179.

64

Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207-20214.

65

Zhu, G.; Li, H. J.; Deng, L. J.; Liu, Z. H. Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater. Lett. 2010, 64, 1763-1765.

66

Ragupathy, P.; Park, D. H.; Campet, G.; Vasan, H. N.; Hwang, S. J.; Choy, J. H.; Munichandraiah, N. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J. Phys. Chem. C 2009, 113, 6303-6309.

67

Yuan, J. Q.; Liu, Z. H.; Qiao, S. F.; Ma, X. R.; Xu, N. C. Fabrication of MnO2-pillared layered manganese oxide through an exfoliation/reassembling and oxidation process. J. Power Sources 2009, 189, 1278-1283.

68

Yuan, C. Z.; Gao, B.; Su, L. H.; Zhang, X. G. Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors. J. Colloid Interface Sci. 2008, 322, 545-550.

69

Xu, M. W.; Jia, W.; Bao, S. J.; Su, Z.; Dong, B. Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage. Electrochim. Acta 2010, 55, 5117-5122.

70

He, X. X.; Yang, M. Y.; Ni, P.; Li, Y.; Liu, Z. H. Rapid synthesis of hollow structured MnO2 microspheres and their capacitance. Colloid Surf. A-Physicochem. Eng. Asp. 2010, 363, 64-70.

71

Yu, P.; Zhang, X.; Chen, Y.; Ma, Y. W. Self-template route to MnO2 hollow structures for supercapacitors. Mater. Lett. 2010, 64, 1480-1482.

72

Tang, N.; Tian, X. K.; Yang, C.; Pi, Z. B. Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater. Res. Bull. 2009, 44, 2062-2067.

73

Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216-225.

74

Meher, S. K.; Rao, G. R. Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 2011, 115, 15646-15654.

75

Meher, S. K.; Justin, P.; Rao, G. R. Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale 2011, 3, 683-692.

76

Shim, H. W.; Lim, A. H.; Kim, J. C.; Jang, E.; Seo, S. D.; Lee, G. H.; Kim, T. D.; Kim, D. W. Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructures for supercapacitor electrodes. Sci. Rep. 2013, 3, 2325.

Nano Research
Pages 990-1004
Cite this article:
Park S, Shim H-W, Lee CW, et al. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Research, 2015, 8(3): 990-1004. https://doi.org/10.1007/s12274-014-0581-1

617

Views

40

Crossref

N/A

Web of Science

40

Scopus

0

CSCD

Altmetrics

Received: 23 July 2014
Revised: 16 August 2014
Accepted: 09 September 2014
Published: 13 October 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return