AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells

Jianyu Chen1Weixin Zhou1Jun Chen1Yong Fan1Ziqiang Zhang1Zhendong Huang1Xiaomiao Feng1( )Baoxiu Mi1Yanwen Ma1( )Wei Huang1,2( )
Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications (NUPT)Nanjing210046China
Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced MaterialsNanjing Tech UniversityNanjing211816China
Show Author Information

Graphical Abstract

Abstract

The easy oxidation and surface roughness of Cu nanowire (NW) films are the main bottlenecks for their usage in transparent conductive electrodes (TCEs). Herein, we have developed a facile and scaled-up solution route to prepare Cu NW-based TCEs by embedding Cu NWs into pre-coated smooth poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) films on poly(ethylene terephthalate) (PET) substrates. The so obtained Cu NW-PEDOT: PSS/PET films have low surface roughness (~70 nm in height), high stability toward oxidation and good flexibility. The optimal TCEs show a typical sheet resistance of 15 Ω·sq-1 at high transparency (76% at λ = 550 nm) and have been used successfully to make polymer (poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester) solar cells, giving an efficiency of 1.4%. The overall properties of Cu NW-PEDOT: PSS/PET films demonstrate their potential application as a replacement for indium tin oxide in flexible solar cells.

Electronic Supplementary Material

Download File(s)
12274_2014_583_MOESM1_ESM.pdf (1.7 MB)

References

1

He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 2012, 6, 591-595.

2

Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Zhang, J.; Chand, S.; Bazan, G. C.; Heeger, A. J. Efficient solution-processed small-molecule solar cells with inverted structure. Adv. Mater. 2013, 25, 2397-2402.

3

Seifter, J.; Sun, Y.; Heeger, A. J. Transient photocurrent response of small-molecule bulk heterojunction solar cells. Adv. Mater. 2014, 26, 2486-2493.

4

Carsten, B.; Szarko, J. M.; Son, H. J.; Wang, W.; Lu, L.; He, F.; Rolczynski, B. S.; Lou, S. J.; Chen, L. X.; Yu, L. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 2011, 133, 20468-20475.

5

You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. -C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

6

Cairns, D. R.; Witte, R. P.; Sparacin, D. K.; Sachsman, S. M.; Paine, D. C.; Crawford, G. P.; Newton, R. R. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 2000, 76, 1425-1427.

7

Hecht, D. S.; Kaner, R. B. Solution-processed transparent electrodes. MRS Bull. 2011, 36, 749-755.

8

Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.

9

Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 808-817.

10

Krantz, J.; Richter, M.; Spallek, S.; Spiecker, E.; Brabec, C. J. Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells. Adv. Funct. Mater. 2011, 21, 4784-4787.

11

Leem, D. -S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; de Mello, J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371-4375.

12

Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075-4084.

13

Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905-2910.

14

Yu, Z.; Li, L.; Zhang, Q.; Hu, W.; Pei, Q. Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453-4457.

15

Lee, J. -Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689-692.

16

Buldum, A.; Lu, J. P. Contact resistance between carbon nanotubes. Phys. Rev. B. 2001, 63, 161403.

17

Rathmell, A. R.; Bergin, S. M.; Hua, Y. -L.; Li, Z. -Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. . Adv. Mater. 2010, 22, 3558-3563.

18

Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798-4803.

19

Ye, S.; Rathmell, A. R.; Stewart, I. E.; Ha, Y. -C.; Wilson, A. R.; Chen, Z.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 2014, 50, 2562-2564.

20

Mayousse, C.; Celle, C.; Carella, A.; Simonato, J. -P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS. Nano Res. 2014, 7, 315-324.

21

Sachse, C.; Weiss, N.; Gaponik, N.; Müller-Meskamp, L.; Eychmüller, A.; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 2014, 4, 1300737.

22

Guo, H.; Lin, N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

23

Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193-3199.

24

Chang, Y.; Lye, M. L.; Zeng, H. C. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 2005, 21, 3746-3748.

25

Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. -S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171-4176.

26

Yan, H.; Jo, T.; Okuzaki, H. Highly conductive and transparent poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) thin films. Polym. J. 2009, 41, 1028-1029.

Nano Research
Pages 1017-1025
Cite this article:
Chen J, Zhou W, Chen J, et al. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells. Nano Research, 2015, 8(3): 1017-1025. https://doi.org/10.1007/s12274-014-0583-z

664

Views

81

Crossref

N/A

Web of Science

84

Scopus

6

CSCD

Altmetrics

Received: 07 June 2014
Revised: 12 September 2014
Accepted: 13 September 2014
Published: 17 October 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return