Graphical Abstract

The easy oxidation and surface roughness of Cu nanowire (NW) films are the main bottlenecks for their usage in transparent conductive electrodes (TCEs). Herein, we have developed a facile and scaled-up solution route to prepare Cu NW-based TCEs by embedding Cu NWs into pre-coated smooth poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) films on poly(ethylene terephthalate) (PET) substrates. The so obtained Cu NW-PEDOT: PSS/PET films have low surface roughness (~70 nm in height), high stability toward oxidation and good flexibility. The optimal TCEs show a typical sheet resistance of 15 Ω·sq-1 at high transparency (76% at λ = 550 nm) and have been used successfully to make polymer (poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester) solar cells, giving an efficiency of 1.4%. The overall properties of Cu NW-PEDOT: PSS/PET films demonstrate their potential application as a replacement for indium tin oxide in flexible solar cells.
He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 2012, 6, 591-595.
Kyaw, A. K. K.; Wang, D. H.; Gupta, V.; Zhang, J.; Chand, S.; Bazan, G. C.; Heeger, A. J. Efficient solution-processed small-molecule solar cells with inverted structure. Adv. Mater. 2013, 25, 2397-2402.
Seifter, J.; Sun, Y.; Heeger, A. J. Transient photocurrent response of small-molecule bulk heterojunction solar cells. Adv. Mater. 2014, 26, 2486-2493.
Carsten, B.; Szarko, J. M.; Son, H. J.; Wang, W.; Lu, L.; He, F.; Rolczynski, B. S.; Lou, S. J.; Chen, L. X.; Yu, L. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 2011, 133, 20468-20475.
You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. -C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.
Cairns, D. R.; Witte, R. P.; Sparacin, D. K.; Sachsman, S. M.; Paine, D. C.; Crawford, G. P.; Newton, R. R. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 2000, 76, 1425-1427.
Hecht, D. S.; Kaner, R. B. Solution-processed transparent electrodes. MRS Bull. 2011, 36, 749-755.
Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.
Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 808-817.
Krantz, J.; Richter, M.; Spallek, S.; Spiecker, E.; Brabec, C. J. Solution-processed metallic nanowire electrodes as indium tin oxide replacement for thin-film solar cells. Adv. Funct. Mater. 2011, 21, 4784-4787.
Leem, D. -S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; de Mello, J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371-4375.
Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075-4084.
Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905-2910.
Yu, Z.; Li, L.; Zhang, Q.; Hu, W.; Pei, Q. Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453-4457.
Lee, J. -Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689-692.
Buldum, A.; Lu, J. P. Contact resistance between carbon nanotubes. Phys. Rev. B. 2001, 63, 161403.
Rathmell, A. R.; Bergin, S. M.; Hua, Y. -L.; Li, Z. -Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. . Adv. Mater. 2010, 22, 3558-3563.
Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798-4803.
Ye, S.; Rathmell, A. R.; Stewart, I. E.; Ha, Y. -C.; Wilson, A. R.; Chen, Z.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 2014, 50, 2562-2564.
Mayousse, C.; Celle, C.; Carella, A.; Simonato, J. -P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS. Nano Res. 2014, 7, 315-324.
Sachse, C.; Weiss, N.; Gaponik, N.; Müller-Meskamp, L.; Eychmüller, A.; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 2014, 4, 1300737.
Guo, H.; Lin, N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.
Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193-3199.
Chang, Y.; Lye, M. L.; Zeng, H. C. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 2005, 21, 3746-3748.
Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. -S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171-4176.
Yan, H.; Jo, T.; Okuzaki, H. Highly conductive and transparent poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) thin films. Polym. J. 2009, 41, 1028-1029.