AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design

Liang XuHai-Wei LiangHui-Hui LiKai WangYuan YangLu-Ting SongXu WangShu-Hong Yu( )
Division of Nanomaterials and ChemistryHefei National Laboratory for Physical Sciences at MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

The stability and reactivity of nanomaterials are of crucial importance for their application, but the long-term effects of stability and reactivity of nanomaterials under practical conditions are still not well understood. In this study, we first established a comprehensive strategy to investigate the stability of a highly reactive nanomaterial from the viewpoint of reaction kinetics with ultrathin tellurium nanowires (TeNWs) as a model material in aqueous solution through an accelerated oxidation process. This allowed us to propose a new approach for the design and synthesis of other unique one-dimensional nanostructures by a chemical transformation process using the intermediate nanostructures "captured" during the dynamic oxidation process under different conditions. In essence, the oxidation of ultrathin TeNWs is a gas-solid reaction which involves liquid, gas and solid phases. It has been demonstrated that the oxidation process of ultrathin TeNWs in aqueous solution can be divided into three stages, namely oxygen limiting, ultrathin TeNWs limiting and mass transfer resistance limiting stages. The apparent oxidation kinetics for ultrathin TeNWs is approximately in accord with a first order reaction kinetics model and has an apparent activation energy as low as 13.53 kJ·mol-1, indicating that ultrathin TeNWs are thermodynamically unstable. However, the unstable nature of ultrathin TeNWs is actually an advantage since it can act as an excellent platform to help us synthesize and design one-dimensional functional nanomaterials-with special structures and distinctive properties-which are difficult to obtain by a direct synthesis method.

Electronic Supplementary Material

Download File(s)
12274_2014_586_MOESM1_ESM.pdf (4.4 MB)

References

1

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

2

Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

3

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

4

Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

5

Mackenzie, J. D.; Bescher, E. P. Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc. Chem. Res. 2007, 40, 810–818.

6

Ghosh Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

7

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

8

Walther, A.; Muller, A. H. E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194–5261.

9

Xia, Y. S.; Tang, Z. Y. Monodisperse inorganic supraparticles: Formation mechanism, properties and applications. Chem. Commun. 2012, 48, 6320–6336.

10

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

11

Gong, J. X.; Li, G. D.; Tang, Z. Y. Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 2012, 7, 564–585.

12

Pratt, A.; Lari, L.; Hovorka, O.; Shah, A.; Woffinden, C.; Tear, S. P.; Binns, C.; Kroger, R. Enhanced oxidation of nanoparticles through strain-mediated ionic transport. Nat. Mater. 2014, 13, 26–30.

13

Andrievski, R. A. Review stability of nanostructured materials. J. Mater. Sci. 2003, 38, 1367–1375.

14

Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

15

Tang, Z. Y.; Wang, Y.; Shanbhag, S.; Giersig, M.; Kotov, N. A. Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: From particles and rods to checkmarks, X-marks, and other unusual shapes. J. Am. Chem. Soc. 2006, 128, 6730–6736.

16

Tang, Z. Y.; Wang, Y.; Sun, K.; Kotov, N. A. Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires. Adv. Mater. 2005, 17, 358–363.

17

Moreels, I.; Fritzinger, B.; Martins, J. C.; Hens, Z. Surface chemistry of colloidal PbSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 15081–15086.

18

Xiong, Y. J. Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching. Chem. Commun. 2011, 47, 1580–1582.

19

Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.

20

Mortimer, R. G. Physical Chemistry; Academic Press: London, 2008.

21

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

22

Peng, Z. A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

23

Bunge, S. D.; Krueger, K. M.; Boyle, T. J.; Rodriguez, M. A.; Headley, T. J.; Colvin, V. L. Growth and morphology of cadmium chalcogenides: The synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O2CCH3)2. J. Mater. Chem. 2003, 13, 1705–1709.

24

Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466.

25

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

26

Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

27

Liang, H. W.; Liu, J. W.; Qian, H. S.; Yu, S. H. Multiplex templating process in one-dimensional nanoscale: Controllable synthesis, macroscopic assemblies, and applications. Acc. Chem. Res. 2013, 46, 1450–1461.

28

Liang, H. W.; Cao, X.; Zhou, F.; Cui, C. H.; Zhang, W. J.; Yu, S. H. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.

29

Liang, H. W.; Liu, S.; Yu, S. H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates. Adv. Mater. 2010, 22, 3925–3937.

30

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem. Int. Ed. 2013, 52, 7472–7476.

31

Chen, L. F.; Zhang, X. D.; Liang, H. W.; Kong, M. G.; Guan, Q. F.; Chen, P.; Wu, Z. Y.; Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

32

Wang, K.; Liang, H. W.; Yao, W. T.; Yu, S. H. Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance. J. Mater. Chem. 2011, 21, 15057–15062.

33

Liu, J. W.; Xu, J.; Liang, H. W.; Wang, K.; Yu, S. H. Macroscale ordered ultrathin telluride nanowire films, and tellurium/telluride hetero-nanowire films. Angew. Chem. Int. Ed. 2012, 51, 7420–7425.

34

Wu, Z. Y.; Li, C.; Liang, H. W.; Chen, J. F.; Yu, S. H. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew. Chem. Int. Ed. 2013, 52, 2925–2929.

35

Liang, H. W.; Cao, X.; Zhang, W. J.; Lin, H. T.; Zhou, F.; Chen, L. F.; Yu, S. H. Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 2011, 21, 3851–3858.

36

Lan, W. J.; Yu, S. H.; Qian, H. S.; Wan, Y. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: Morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 2007, 23, 3409–3417.

37

Liu, J. W.; Chen, F.; Zhang, M.; Qi, H.; Zhang, C. L.; Yu, S. H. Rapid microwave-assisted synthesis of uniform ultralong Te nanowires, optical property, and chemical stability. Langmuir 2010, 26, 11372–11377.

38

Liang, H. W.; Zhang, W. J.; Ma, Y. N.; Cao, X.; Guan, Q. F.; Xu, W. P.; Yu, S. H. Highly active carbonaceous nanofibers: A versatile scaffold for constructing multifunctional free-standing membranes. ACS Nano 2011, 5, 8148–8161.

39

Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose. Chem. Mater. 2006, 18, 2102–2108.

40

Moon, G. D.; Ko, S.; Xia, Y.; Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 2010, 4, 2307–2319.

41

Lin, Z. H.; Yang, Z. S.; Chang, H. T. Preparation of fluorescent tellurium nanowires at room temperature. Cryst. Growth. Des. 2008, 8, 351–357.

42

Isomäki, H. M.; von Boehm, J. Optical absorption of tellurium. Phys. Scr. 1981, 25, 801–803.

43

Gautam, U. K.; Rao, C. N. R. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J. Mater. Chem. 2004, 14, 2530–2535.

44

Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley Interscience: New York, 1983.

45

Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 2006, 128, 10337–10346.

46

Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H. T.; Ray, P. C. Selective detection of mercury(Ⅱ) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 8038–8043.

47

Cheng, K. L. Analysis of lead telluride with an accuracy to better than 0.1%. Anal. Chem. 1961, 33, 761–764.

48

Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105.

49

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711–714.

50

Wang, W. S.; Dahl, M.; Yin, Y. D. Hollow nanocrystals through the nanoscale Kirkendall effect. Chem. Mater. 2013, 25, 1179–1189.

51

Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 2006, 5, 627–631.

52

Nalwa, H. S. Handbook of Nanostructured Materials and Nanotechnology; Academic Press: London, 2000.

Nano Research
Pages 1081-1097
Cite this article:
Xu L, Liang H-W, Li H-H, et al. Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: An emerging platform for chemical transformation and material design. Nano Research, 2015, 8(4): 1081-1097. https://doi.org/10.1007/s12274-014-0586-9

536

Views

46

Crossref

N/A

Web of Science

46

Scopus

2

CSCD

Altmetrics

Received: 28 July 2014
Revised: 11 September 2014
Accepted: 16 September 2014
Published: 22 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return