Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP (TPA = 4, 4′-((1E, 1′E, 3E, 3′E)-[1, 1′-biphenyl]-4, 4′-diylbis(buta-1, 3-diene-4, 1-diyl)); DP = bis(N, N-di-p-tolylaniline); n = 1, 2, 3, 4) as hole-transporting materials (HTMs) have been fabricated. After optimization of the mesoporous TiO2 film thickness, devices based on 2TPA-2-DP with power conversion efficiencies (PCEs) of up to 12.96% have been achieved, comparable to those of devices with (2, 2′, 7, 7′-tetrakis(N, N-di-p-methoxyphenylamine)-9, 9′-spirobifluorene) (spiro-OMeTAD) as HTM under similar conditions. Further time-resolved photoluminescence (PL) measurements showed a fast charge transfer process at the perovskite/2TPA-2-DP interface. With the aid of electrochemical impedance spectra, a study of the electron blocking ability of 2TPA-2-DP in the device reveals that the presence of 2TPA-2-DP can greatly increase charge transfer resistance at the HTM/Au interface in the device, thus reducing the recombination. Furthermore, the perovskite solar cells based on these four HTMs exhibit good stability after testing for one month.
Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641.
Feng, J.; Xiao, B. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 2014, 5, 1278–1282.
Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. Int. Ed. 2014, 53, 2812–2824.
Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.
Ponseca, C. S. Jr.; Savenije, T. J.; Abdellah, M.; Zheng, K. B.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A. et al. Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014, 136, 5189–5192.
Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.
Park, N.G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429.
Bretschneider, S. A.; Weickert, J.; Dorman, J. A.; Schmidt-Mende, L. Research update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater. 2014, 2, 040701.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
Li, W. Z.; Li, J. L.; Wang, L. D.; Niu, G. D.; Gao, R.; Qiu, Y. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J. Mater. Chem. A 2013, 1, 11735–11740.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–402.
Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.
Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138.
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–320.
Service, R. F. Energy technology perovskite solar cells keep on surging. Science 2014, 344, 458–458.
Laban, W. A.; Etgar, L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 2013, 6, 3249–3253.
Shi, J. J.; Dong, J.; Lv, S. T.; Xu, Y. Z.; Zhu, L. F.; Xiao, J. Y.; Xu, X.; Wu, H. J.; Li, D. M.; Luo, Y. H. et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl. Phys. Lett. 2014, 104, 063901.
Kwon, Y. S.; Lim, J.; Yun, H. J.; Kim, Y. H.; Park, T. A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 2014, 7, 1454–1460.
Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491.
Di Giacomo, F.; Razza, S.; Matteocci, F.; D'Epifanio, A.; Licoccia, S.; Brown, T. M.; Di Carlo, A. High efficiency CH3NH3PbI(3-x)Cl1-x perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J. Power Sources 2014, 251, 152–156.
Ryu, S. C.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J. W.; Seok, S. I. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 2014, 7, 2614–2618.
Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764.
Ito, S.; Tanaka, S.; Vahlman, H.; Nishino, H.; Manabe, K.; Lund, P. Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural control and photoaging effects. ChemPhysChem 2014, 15, 1194–1200.
Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 3834.
Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Graetzel, M.; Seok, S. I. Efficient inorganic organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090.
Krishnamoorthy, T.; Fu, K. W.; Boix, P. P.; Li, H. R.; Koh, T. M.; Leong, W. L.; Powar, S.; Grimsdale, A.; Grätzel, M.; Mathews, N. et al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J. Mater. Chem. A 2014, 2, 6305–6309.
Li, H. R.; Fu, K. W.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. A simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew. Chem. Int. Ed. 2014, 53, 4085–4088.
Krishna, A.; Sabba, D.; Li, H. R.; Yin, J.; Boix, P. P.; Soci, C.; Mhaisalkar, S. G.; Grimsdale, A. C. Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. Chem. Sci. 2014, 5, 2702–2709.
Lv, S. T.; Han, L. Y.; Xiao, J. Y.; Zhu, L. F.; Shi, J. J.; Wei, H. Y.; Xu, Y. Z.; Dong, J.; Xu, X.; Li, D. M. et al. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chem. Commun. 2014, 50, 6931–6934.
Wang, J. J.; Wang, S. R.; Li, X. G.; Zhu, L. F.; Meng, Q. B.; Xiao, Y.; Li, D. M. Novel hole transporting materials with a linear pi-conjugated structure for highly efficient perovskite solar cells. Chem. Commun. 2014, 50, 5829–5832.
Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008, 516, 4613–4619.
Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515.
Guo, X. Z.; Luo, Y. H.; Zhang Y. D.; Huang, X. C.; Li, D. M.; Meng, Q. B. Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Rev. Sci. Instrum. 2010, 81, 103106.
Zhao, Y. X.; Zhu, K. Charge transport and recombination in perovskite CH3NH3PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2013, 4, 2880–2884.
Xu, Y. Z.; Shi, J. J.; Lv, S. T.; Zhu, L. F.; Dong, J.; Wu, H. J.; Xiao, Y.; Luo, Y. H.; Wang, S. R.; Li, D. M. et al. Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells. ACS Appl. Mater. Interfaces 2014, 6, 5651–5656.
Xiao, J. Y.; Han, L. Y.; Zhu, L. F.; Lv, S. T.; Shi, J. J.; Wei, H. Y.; Xu, Y. Z.; Dong, J.; Xu, X.; Xiao, Y. et al. A thin pristine non-triarylamine hole-transporting material layer for efficient CH3NH3PbI3 perovskite solar cells. RSC Adv. 2014, 4, 32918–32923.
Koster, L. J. A.; Mihailetchi, V. D.; Xie, H.; Blom, P. W. M. Origin of the light intensity dependence of the short-circuit current of polymer/fullerence solar cells. Appl. Phys. Lett. 2005, 87, 203502.
You, J. B.; Hong, Z. R.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.B.; Chen, C.C.; Lu, S. R.; Liu, Y. S.; Zhou, H. P. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680.
Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.
Shaw, P. E.; Ruseckas, A.; Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 2008, 20, 3516–3520.
Dualeh, A.; Moehl, T.; Tetreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 2014, 8, 362–373.
Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242.