AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers

Lifeng Zhu1Junyan Xiao1Jiangjian Shi1Junjie Wang2Songtao Lv1Yuzhuan Xu1Yanhong Luo1Yin Xiao2Shirong Wang2Qingbo Meng1( )Xianggao Li2( )Dongmei Li1( )
Key Laboratory for Renewable Energy (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)School of Chemical Engineering and Technology, Tianjin UniversityTianjin300072China
Show Author Information

Graphical Abstract

Abstract

CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP (TPA = 4, 4′-((1E, 1′E, 3E, 3′E)-[1, 1′-biphenyl]-4, 4′-diylbis(buta-1, 3-diene-4, 1-diyl)); DP = bis(N, N-di-p-tolylaniline); n = 1, 2, 3, 4) as hole-transporting materials (HTMs) have been fabricated. After optimization of the mesoporous TiO2 film thickness, devices based on 2TPA-2-DP with power conversion efficiencies (PCEs) of up to 12.96% have been achieved, comparable to those of devices with (2, 2′, 7, 7′-tetrakis(N, N-di-p-methoxyphenylamine)-9, 9′-spirobifluorene) (spiro-OMeTAD) as HTM under similar conditions. Further time-resolved photoluminescence (PL) measurements showed a fast charge transfer process at the perovskite/2TPA-2-DP interface. With the aid of electrochemical impedance spectra, a study of the electron blocking ability of 2TPA-2-DP in the device reveals that the presence of 2TPA-2-DP can greatly increase charge transfer resistance at the HTM/Au interface in the device, thus reducing the recombination. Furthermore, the perovskite solar cells based on these four HTMs exhibit good stability after testing for one month.

Electronic Supplementary Material

Download File(s)
12274_2014_592_MOESM1_ESM.pdf (617.7 KB)

References

1

Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Grätzel, M.; White, T. J. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 2013, 1, 5628–5641.

2

Feng, J.; Xiao, B. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3 (X = I and Br) phases predicted from HSE06. J. Phys. Chem. Lett. 2014, 5, 1278–1282.

3

Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. Int. Ed. 2014, 53, 2812–2824.

4

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

5

Ponseca, C. S. Jr.; Savenije, T. J.; Abdellah, M.; Zheng, K. B.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A. et al. Organometal halide perovskite solar cell materials rationalized: Ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 2014, 136, 5189–5192.

6

Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.

7

Park, N.G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429.

8

Bretschneider, S. A.; Weickert, J.; Dorman, J. A.; Schmidt-Mende, L. Research update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater. 2014, 2, 040701.

9

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

10

Li, W. Z.; Li, J. L.; Wang, L. D.; Niu, G. D.; Gao, R.; Qiu, Y. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J. Mater. Chem. A 2013, 1, 11735–11740.

11

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

12

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–402.

13

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

14

Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138.

15

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–320.

16
NREL. Best Research-Cell Efficiencies [Online]. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed June 30, 2014).
17

Service, R. F. Energy technology perovskite solar cells keep on surging. Science 2014, 344, 458–458.

18

Laban, W. A.; Etgar, L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 2013, 6, 3249–3253.

19

Shi, J. J.; Dong, J.; Lv, S. T.; Xu, Y. Z.; Zhu, L. F.; Xiao, J. Y.; Xu, X.; Wu, H. J.; Li, D. M.; Luo, Y. H. et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Appl. Phys. Lett. 2014, 104, 063901.

20

Kwon, Y. S.; Lim, J.; Yun, H. J.; Kim, Y. H.; Park, T. A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic-inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 2014, 7, 1454–1460.

21

Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491.

22

Di Giacomo, F.; Razza, S.; Matteocci, F.; D'Epifanio, A.; Licoccia, S.; Brown, T. M.; Di Carlo, A. High efficiency CH3NH3PbI(3-x)Cl1-x perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J. Power Sources 2014, 251, 152–156.

23

Ryu, S. C.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J. W.; Seok, S. I. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 2014, 7, 2614–2618.

24

Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764.

25

Ito, S.; Tanaka, S.; Vahlman, H.; Nishino, H.; Manabe, K.; Lund, P. Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural control and photoaging effects. ChemPhysChem 2014, 15, 1194–1200.

26

Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M. K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 3834.

27

Jeon, N. J.; Lee, J.; Noh, J. H.; Nazeeruddin, M. K.; Graetzel, M.; Seok, S. I. Efficient inorganic organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090.

28

Krishnamoorthy, T.; Fu, K. W.; Boix, P. P.; Li, H. R.; Koh, T. M.; Leong, W. L.; Powar, S.; Grimsdale, A.; Grätzel, M.; Mathews, N. et al. A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells. J. Mater. Chem. A 2014, 2, 6305–6309.

29

Li, H. R.; Fu, K. W.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. A simple 3, 4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. Angew. Chem. Int. Ed. 2014, 53, 4085–4088.

30

Krishna, A.; Sabba, D.; Li, H. R.; Yin, J.; Boix, P. P.; Soci, C.; Mhaisalkar, S. G.; Grimsdale, A. C. Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells. Chem. Sci. 2014, 5, 2702–2709.

31

Lv, S. T.; Han, L. Y.; Xiao, J. Y.; Zhu, L. F.; Shi, J. J.; Wei, H. Y.; Xu, Y. Z.; Dong, J.; Xu, X.; Li, D. M. et al. Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chem. Commun. 2014, 50, 6931–6934.

32

Wang, J. J.; Wang, S. R.; Li, X. G.; Zhu, L. F.; Meng, Q. B.; Xiao, Y.; Li, D. M. Novel hole transporting materials with a linear pi-conjugated structure for highly efficient perovskite solar cells. Chem. Commun. 2014, 50, 5829–5832.

33

Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008, 516, 4613–4619.

34

Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.W.; Wojciechowski, K.; Zhang, W. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1511–1515.

35

Guo, X. Z.; Luo, Y. H.; Zhang Y. D.; Huang, X. C.; Li, D. M.; Meng, Q. B. Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Rev. Sci. Instrum. 2010, 81, 103106.

36

Zhao, Y. X.; Zhu, K. Charge transport and recombination in perovskite CH3NH3PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2013, 4, 2880–2884.

37

Xu, Y. Z.; Shi, J. J.; Lv, S. T.; Zhu, L. F.; Dong, J.; Wu, H. J.; Xiao, Y.; Luo, Y. H.; Wang, S. R.; Li, D. M. et al. Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells. ACS Appl. Mater. Interfaces 2014, 6, 5651–5656.

38

Xiao, J. Y.; Han, L. Y.; Zhu, L. F.; Lv, S. T.; Shi, J. J.; Wei, H. Y.; Xu, Y. Z.; Dong, J.; Xu, X.; Xiao, Y. et al. A thin pristine non-triarylamine hole-transporting material layer for efficient CH3NH3PbI3 perovskite solar cells. RSC Adv. 2014, 4, 32918–32923.

39

Koster, L. J. A.; Mihailetchi, V. D.; Xie, H.; Blom, P. W. M. Origin of the light intensity dependence of the short-circuit current of polymer/fullerence solar cells. Appl. Phys. Lett. 2005, 87, 203502.

40

You, J. B.; Hong, Z. R.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.B.; Chen, C.C.; Lu, S. R.; Liu, Y. S.; Zhou, H. P. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680.

41

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

42

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

43

Shaw, P. E.; Ruseckas, A.; Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 2008, 20, 3516–3520.

44

Dualeh, A.; Moehl, T.; Tetreault, N.; Teuscher, J.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 2014, 8, 362–373.

45

Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242.

Nano Research
Pages 1116-1127
Cite this article:
Zhu L, Xiao J, Shi J, et al. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8(4): 1116-1127. https://doi.org/10.1007/s12274-014-0592-y

680

Views

66

Crossref

N/A

Web of Science

68

Scopus

2

CSCD

Altmetrics

Received: 30 June 2014
Revised: 16 September 2014
Accepted: 19 September 2014
Published: 03 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return