AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrical field tuning of magneto-Raman scattering in monolayer graphene

Xiaonan Shen1,§Caiyu Qiu1,2,§Bingchen Cao1Chunxiao Cong1Weihuang Yang1Haomin Wang1Ting Yu1,3,4( )
Division of Physics and Applied PhysicsSchool of Physical and Mathematical Sciences, Nanyang Technological University637371Singapore, Singapore
Wenzhou Institute of Biomaterials and EngineeringWenzhou325001China
Department of PhysicsFaculty of ScienceNational University of Singapore117542Singapore, Singapore
Graphene Research CenterFaculty of ScienceNational University of Singapore117546Singapore, Singapore

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In this work, we report the electrical field tuning of magneto-phonon resonance in monolayer graphene under magnetic fields up to 9 T. It is found that the carrier concentration can drastically affect the G (E2g) phonon response to a varying magnetic field through a pronounced magneto-phonon resonance (MPR). In charge neutral or slightly doped monolayer graphene, both the energy and the line width of the E2g phonon show clear variation with magnetic fields. This is attributed to magneto-phonon resonance between magnetoexcitations and the E2g phonons. In contrast, when the Fermi level of the monolayer graphene is far away from the Dirac point, the G band shows weak magnetic dependence and exhibits a symmetric line-shape. This suggests that the magneto-phonon coupling around 4 T has been switched off due to the Pauli blocking of the inter-Landau level excitations. Moreover, the G band asymmetry caused by Fano resonance between excitonic many-body states and the E2g phonons is observed. This work offers a way to study the magnetoexcitation phonon interaction of materials through magneto-Raman spectroscopy with an external electrical field.

Electronic Supplementary Material

Download File(s)
12274_2014_594_MOESM1_ESM.pdf (1.5 MB)

References

1

Barnes, D. J.; Nicholas, R. J.; Peeters, F. M.; Wu, X. G.; Devreese, J. T.; Singleton, J.; Langerak, C. J. G. M.; Harris, J. J.; Foxon, C. T. Observation of optically detected magnetophonon resonance. Phys. Rev. Lett. 1991, 66, 794–797.

2

Vaughan, T. A.; Nicholas, R. J.; Langerak, C. J. G. M.; Murdin, B. N.; Pidgeon, C. R.; Mason, N. J.; Walker, P. J. Direct observation of magnetophonon resonances in Landau-level lifetimes of a semiconductor heterostructure. Phys. Rev. B 1996, 53, 16481–16484.

3

Nicholas, R. J. The magnetophonon effect. Prog. Quantum Electron. 1985, 10, 1–75.

4

Firsov, Y. A.; Gurevich, V. L.; Parfeniev, R. V.; Shalyt, S. S. Investigation of a new type of oscillations in the magnetoresistance. Phys. Rev. Lett. 1964, 12, 660–662.

5

Tsui, D. C.; Englert, T.; Cho, A. Y.; Gossard, A. C. Observation of magnetophonon resonances in a two-dimensional electronic system. Phys. Rev. Lett. 1980, 44, 341–344.

6

Stradling, R. A.; Wood, R. A. The magnetophonon effect in Ⅲ–Ⅴ semiconducting compounds. J. Phys. C: Solid State Phys. 1968, 1, 1711.

7

Kossacki, P.; Faugeras, C.; Kühne, M.; Orlita, M.; Mahmood, A.; Dujardin, E.; Nair, R. R.; Geim, A. K.; Potemski, M. Circular dichroism of magnetophonon resonance in doped graphene. Phys. Rev. B 2012, 86, 205431.

8

Kim, Y.; Poumirol, J. M.; Lombardo, A.; Kalugin, N. G.; Georgiou, T.; Kim, Y. J.; Novoselov, K. S.; Ferrari, A. C.; Kono, J.; Kashuba, O. et al. Measurement of filling-factor-dependent magnetophonon resonances in graphene using raman spectroscopy. Phys. Rev. Lett. 2013, 110, 227402.

9

Leszczynski, P.; Han, Z.; Nicolet, A. A. L.; Piot, B. A.; Kossacki, P.; Orlita, M.; Bouchiat, V.; Basko, D. M.; Potemski, M.; Faugeras, C. Electrical switch to the resonant magneto-phonon effect in graphene. Nano Lett. 2014, 14, 1460–1466.

10

Ando, T. Magnetic oscillation of optical phonon in graphene. J. Phys. Soc. Jpn. 2007, 76, 024712.

11

Goerbig, M. O.; Fuchs, J. N.; Kechedzhi, K.; Fal'ko, V. I. Filling-factor-dependent magnetophonon resonance in graphene. Phys. Rev. Lett. 2007, 99, 087402.

12

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

13

Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 2007, 98, 166802.

14

Luo, Z. Q.; Yu, T.; Ni, Z. H.; Lim, S. H.; Hu, H. L.; Shang, J. Z.; Liu, L.; Shen, Z. X.; Lin, J. Y. Electronic structures and structural evolution of hydrogenated graphene probed by Raman spectroscopy. J. Phys. Chem. C 2011, 115, 1422–1427.

15

Luo, Z. Q.; Yu, T.; Kim, K. J.; Ni, Z. H.; You, Y. M.; Lim, S. H.; Shen, Z. X.; Wang, S. Z.; Lin, J. Y. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781–1788.

16

Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2, 2301–2305.

17

Yu, T.; Ni, Z. H.; Du, C. L.; You, Y. M.; Wang, Y. Y.; Shen, Z. X. Raman mapping investigation of graphene on transparent flexible substrate: The strain effect. J. Phys. Chem. C 2008, 112, 12602–12605.

18

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

19

Cong, C.; Yu, T.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Second-order overtone and combination Raman modes of graphene layers in the range of 1690–2150 cm-1. ACS Nano 2011, 5, 1600–1605.

20

Cong, C. X.; Yu, T.; Sato, K.; Shang, J. Z.; Saito, R.; Dresselhaus, G. F.; Dresselhaus, M. S. Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 2011, 5, 8760–8768.

21

Cong, C. X.; Yu, T.; Wang, H. M. Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 2010, 4, 3175–3180.

22

Yan, J.; Goler, S.; Rhone, T. D.; Han, M.; He, R.; Kim, P.; Pellegrini, V.; Pinczuk, A. Observation of magnetophonon resonance of Dirac fermions in graphite. Phys. Rev. Lett. 2010, 105, 227401.

23

Faugeras, C.; Amado, M.; Kossacki, P.; Orlita, M.; Kühne, M.; Nicolet, A. A. L.; Latyshev, Y. I; Potemski, M. Magneto-Raman scattering of graphene on graphite: Electronic and phonon excitations. Phys. Rev. Lett. 2011, 107, 036807.

24

Kühne, M.; Faugeras, C.; Kossacki, P.; Nicolet, A. A. L.; Orlita, M.; Latyshev, Y. I.; Potemski, M. Polarization-resolved magneto-Raman scattering of graphenelike domains on natural graphite. Phys. Rev. B 2012, 85, 195406.

25

Qiu, C. Y.; Shen, X. N.; Cao, B. C.; Cong, C. X.; Saito, R.; Yu, J. J.; Dresselhaus, M. S.; Yu, T. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Phys. Rev. B 2013, 88, 165407.

26

Faugeras, C.; Kossacki, P.; Nicolet, A. A. L.; Orlita, M.; Potemski, M.; Mahmood, A.; Basko, D. M. Probing the band structure of quadri-layer graphene with magneto-phonon resonance. New J. Phys. 2012, 14, 095007.

27

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

28

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

29

Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

30

Shen, X. N.; Wang, H. M.; Yu, T. How do the electron beam writing and metal deposition affect the properties of graphene during device fabrication? Nanoscale 2013, 5, 3352–3358.

31

Sarma, S. D.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.

32

Rémi, S.; Goldberg, B. B.; Swan, A. K. Charge tuning of nonresonant magnetoexciton phonon interactions in graphene. Phys. Rev. Lett. 2014, 112, 056803.

33

Yoon, D.; Jeong, D.; Lee, H. J.; Saito, R.; Son, Y. W.; Lee, H. C.; Cheong, H. Fano resonance in Raman scattering of graphene. Carbon 2013, 61, 373–378.

34

Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat. Mater. 2012, 11, 294–300.

35

Oberli, D. Y.; Böhm, G.; Weimann, G.; Brum, J. A. Fano resonances in the excitation spectra of semiconductor quantum wells. Phys. Rev. B 1994, 49, 5757–5760.

36

Bellani, V.; Pérez, E.; Zimmermann, S.; Viña, L.; Hey, R.; Ploog, K. Evolution of Fano resonances in two- and three-dimensional semiconductors with a magnetic field. Solid State Commun. 1996, 97, 459–464.

37

Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y. J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 2007, 98, 197403.

38

Jung, S.; Rutter, G. M.; Klimov, N. N.; Newell, D. B.; Calizo, I.; Hight-Walker, A. R.; Zhitenev, N. B.; Stroscio, J. A. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nat. Phys. 2011, 7, 245–251.

39

Elias, D. C.; Gorbachev, R. V.; Mayorov, A. S.; Morozov, S. V.; Zhukov, A. A.; Blake, P.; Ponomarenko, L. A.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 2011, 7, 701–704.

40

Hwang, C.; Siegel, D. A.; Mo, S. K.; Regan, W.; Ismach, A.; Zhang, Y. G.; Zettl, A.; Lanzara, A. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2012, 2, 590.

41

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

42

Faugeras, C.; Amado, M.; Kossacki, P.; Orlita, M.; Sprinkle, M.; Berger, C.; de Heer, W. A.; Potemski, M. Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. Phys. Rev. Lett. 2009, 103, 186803.

43

von Klitzing, K. The quantized Hall effect. Rev. Mod. Phys. 1986, 58, 519–531.

44

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

45

Kashuba, O.; Fal'ko, V. I. Interplay between uniaxial strain and magnetophonon resonance in graphene. Phys. Rev. B 2013, 87, 161404.

46

Goler, S.; Yan, J.; Pellegrini, V.; Pinczuk, A. Raman spectroscopy of magneto-phonon resonances in graphene and graphite. Solid State Commun. 2012, 152, 1289–1293.

Nano Research
Pages 1139-1147
Cite this article:
Shen X, Qiu C, Cao B, et al. Electrical field tuning of magneto-Raman scattering in monolayer graphene. Nano Research, 2015, 8(4): 1139-1147. https://doi.org/10.1007/s12274-014-0594-9

503

Views

7

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 06 June 2014
Revised: 17 September 2014
Accepted: 24 September 2014
Published: 04 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return