AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide

Pattaramon Vuttipittayamongkol1,,§Fanqi Wu2,§Haitian Chen1Xuan Cao2Bilu Liu1Chongwu Zhou1,2( )
Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos Angeles, CA90089USA
Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos Angeles, CA90089USA

Present address: School of Information Technology, Mae Fah Luang University, Chiang Rai 57100, Thailand

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Carbon nanotubes (CNTs) have emerged as an important material for printed macroelectronics. However, achieving printed complementary macroelectronics solely based on CNTs is difficult because it is still challenging to make reliable n-type CNT transistors. In this study, we report threshold voltage (Vth) tuning and printing of complementary transistors and inverters composed of thin films of CNTs and indium zinc oxide (IZO) as p-type and n-type transistors, respectively. We have optimized the Vth of p-type transistors by comparing Ti/Au and Ti/Pd as source/drain electrodes, and observed that CNT transistors with Ti/Au electrodes exhibited enhancement mode operation (Vth < 0). In addition, the optimized In: Zn ratio offers good n-type transistors with high on-state current (Ion) and enhancement mode operation (Vth > 0). For example, an In: Zn ratio of 2:1 yielded an enhancement mode n-type transistor with Vth ~ 1 V and Ion of 5.2 μA. Furthermore, by printing a CNT thin film and an IZO thin film on the same substrate, we have fabricated a complementary inverter with an output swing of 99.6% of the supply voltage and a voltage gain of 16.9. This work shows the promise of the hybrid integration of p-type CNT and n-type IZO for complementary transistors and circuits.

Electronic Supplementary Material

Download File(s)
12274_2014_596_MOESM1_ESM.pdf (1.1 MB)

References

1

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

2

Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

3

Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; Arco, L. G. D.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

4

Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.

5

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

6

Liu, B. L.; Wang, C.; Liu, J.; Che, Y. C.; Zhou, C. W. Aligned carbon nanotubes: From controlled synthesis to electronic applications. Nanoscale 2013, 5, 9483–9502.

7

Balasubramanian, K.; Sordan, R.; Burghard, M.; Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 2004, 4, 827–830.

8

Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

9

Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

10

Li, S. S.; Liu, C.; Hou, P. X.; Sun, D. M.; Cheng, H. M. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors. ACS Nano 2012, 6, 9657–9661.

11

An, L; Fu, Q; Lu, C. G.; Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 2004, 126, 10520–10521.

12

Vaillancourt, J.; Zhang, H. Y.; Vasinajindakaw, P.; Xia, H. T.; Lu, X. J.; Han, X. L.; Janzen, D. C.; Shih, W. S.; Jones, C. S.; Stroder, M. et al. All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl. Phys. Lett. 2008, 93, 243301.

13

Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382–5388.

14

Li, X. K.; Guard, L. M.; Jiang, J.; Sakimoto, K.; Huang, J. S.; Wu, J. G.; Li, J. Y.; Yu, L. Q.; Pokhrel, R.; Brudvig, G. W. et al. Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells. Nano Lett. 2014, 14, 3388–3394.

15

Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.

16

Wang, C.; Zhang, J. L.; Zhou, C. W. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.

17

Lee, C. W.; Weng, C. H.; Wei, L.; Chen, Y.; Chan-Park, M. B.; Tsai, C. H.; Leou, K. C.; Poa, C. H. P.; Wang, J. L.; Li, L. J. Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem. C 2008, 112, 12089–12091.

18

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

19

Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, P. Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 2002, 80, 2773–2775.

20

Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.

21

Yaglioglu, B; Yeom, H. Y.; Beresford, R.; Paine, D. C. High-mobility amorphous In2O3-10 wt. % ZnO thin film transistors. Appl. Phys. Lett. 2006, 89, 062103.

22

Liu, X. Q.; Wang, C. L.; Cai, B.; Xiao, X. H.; Guo, S. S.; Fan, Z. Y.; Li, J. C.; Duan, X. F.; Liao, L. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett. 2012, 12, 3596–3601.

23

Choi, C. G.; Seo, S. J.; Bae, B. S. Solution-processed indium-zinc oxide transparent thin-film transistors. Electrochem. Solid-State Lett. 2008, 11, H7–H9.

24

Lee, S.; Kim, J.; Choi, J.; Park, H.; Ha, J.; Kim, Y.; Rogers, J. A.; Paik, U. Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. Appl. Phys. Lett. 2012, 100, 102108.

25

Lee, D. H.; Chang, Y. J.; Herman, G. S.; Chang, C. H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 2007, 19, 843–847.

26

Ong, B. S.; Li, C. S.; Li, Y. N.; Wu, Y. L.; Loutfy, R. Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 2007, 129, 2750–2751.

27

Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005, 487, 205–211.

28

Lim, J. H.; Shim, J. H.; Choi, J. H.; Joo, J.; Park, K.; Jeon, H.; Moon, M. R.; Jung, D.; Kim, H.; Lee, H. J. Solution-processed InGaZnO-based thin film transistors for printed electronics applications. Appl. Phys. Lett. 2009, 95, 012108.

29

Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

30

Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.

31

Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687.

32

Chen, Z. H.; Appenzeller, J.; Knoch, J.; Lin, Y. M.; Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502.

33

Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858.

34

Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.

35

Noh, J.; Jung, M.; Jung, K.; Lee, G.; Kim, J.; Lim, S.; Kim, D.; Choi, Y.; Kim, Y.; Subramanian, V. et al. Fully gravure-printed D flip-flop on plastic foils using single-walled carbon-nanotube-based TFTs. IEEE Electron Device Lett. 2011, 32, 638–640.

36

Kim, B.; Jang, S.; Geier, M. L.; Prabhumirashi, P. L.; Hersam, M. C.; Dodabalapur, A. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures. Appl. Phys. Lett. 2014, 104, 062101.

37

Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

38

Avouris, P. Carbon Nanotube Electronics. Chem. Phys. 2002, 281, 429–445.

39

Javey, A.; Wang, Q.; Ural, A.; Li, Y. M.; Dai, H. J. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929–932.

Nano Research
Pages 1159-1168
Cite this article:
Vuttipittayamongkol P, Wu F, Chen H, et al. Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide. Nano Research, 2015, 8(4): 1159-1168. https://doi.org/10.1007/s12274-014-0596-7

760

Views

22

Crossref

N/A

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 16 July 2014
Revised: 23 September 2014
Accepted: 26 September 2014
Published: 06 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return