AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene

Longkai PeiQi JinZhiqiang ZhuQing ZhaoJing LiangJun Chen( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)Collaborative Innovation Center of Chemical Science and EngineeringCollege of ChemistryNankai UniversityTianjin300071China
Show Author Information

Graphical Abstract

Abstract

We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3-4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm3·g-1 and a high surface area of 470.5 m2·g-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cm3·g-1 and a surface area of 237.7 m2·g-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1, 155 mA·h·g-1 in the initial cycle, a reversible capacity of 432 mA·h·g-1 after 200 cycles at 100 mA·g-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mA·h·g-1 at a high rate of 800 mA·g-1. This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.

Electronic Supplementary Material

Download File(s)
12274_2014_609_MOESM1_ESM.pdf (2.7 MB)

References

1

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.

2

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65-76.

3

Li, C.; Shi, G. Q. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549-5563.

4

Nardecchia, S.; Carriazo, D.; Luisa Ferrer, M.; Gutierrez, M. C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794-830.

5

Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: review of critical factors in microstructure evolution. Inter. Mater. Rev. 2012, 57, 37-60.

6

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324-4330.

7

Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180-2184.

8

Ouyang, W. Z.; Sun, J. H.; Memon, J.; Wang, C.; Geng, J. X.; Huang, Y. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors. Carbon 2013, 62, 501-509.

9

Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Energy Mater. 2008, 10, 155-169.

10

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.

11

Chen, S.; Wang, M.; Ye, J. F.; Cai, J. G.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Res. 2013, 6, 243-252.

12

Zhou, X.; Wan, L. -J.; Guo, Y. -G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152-2157.

13

Kim, H.; Kim, S. -W.; Park, Y. -U.; Gwon, H.; Seo, D. -H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813-821.

14

Cui, L. F.; Shen, J.; Cheng, F. Y.; Tao, Z. L.; Chen, J. SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J. Power Sources 2011, 196, 2195-2201.

15

Huang, Y. S.; Wu, D. Q.; Han, S.; Li, S.; Xiao, L.; Zhang, F.; Feng, X. L. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage. ChemSusChem 2013, 6, 1510-1515.

16

Su, D. W.; Ahn, H. -J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131-3133.

17

Wang, Y. -X.; Lim, Y. -G.; Park, M. -S.; Chou, S. -L.; Kim, J. H.; Liu, H. -K.; Dou, S. -X.; Kim, Y. -J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2014, 2, 529-534.

18

Xiao, M.; Du, X. S.; Meng, Y. Z.; Gong, K. C. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide. New Carbon Mater. 2004, 19, 92-96.

19

Nguyen, S. T.; Ruoff, R. S.; Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

20

Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A 2013, 1, 9484-9490.

21

Liang, J. F.; Cai, Z.; Tian, Y.; Li, L. D.; Geng, J. X.; Guo, L. Deposition SnO2/nitrogen-doped graphene nanocomposites on the separator: A new type of flexible electrode for energy storage devices. ACS Appl. Mater. Inter 2013, 5, 12148-12155.

22

Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 2010, 3, 748-756.

23

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.

24

Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energ Environ. Sci. 2011, 4, 3668-3675.

25

Gao, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Intergrown Li2FeSiO4·LiFePO4-C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chem. Commun. 2013, 49, 3040-3042.

26

McAllister, M. J.; Li, J. -L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396-4404.

Nano Research
Pages 184-192
Cite this article:
Pei L, Jin Q, Zhu Z, et al. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 2015, 8(1): 184-192. https://doi.org/10.1007/s12274-014-0609-6
Part of a topical collection:

947

Views

65

Crossref

N/A

Web of Science

63

Scopus

8

CSCD

Altmetrics

Received: 23 July 2014
Revised: 15 September 2014
Accepted: 10 October 2014
Published: 21 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return