AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Solution-derived poly(ethylene glycol)-TiOx nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells

Zhigang Yin1,2Qingdong Zheng1( )Shan-Ci Chen1Jiaxin Li1Dongdong Cai1Yunlong Ma1Jiajun Wei1,2
State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Highly efficient and stable polymer solar cells (PSCs) have been fabricated by adopting solution-derived hybrid poly(ethylene glycol)-titanium oxide (PEG-TiOx) nanocomposite films as a novel and universal cathode buffer layer (CBL), which can greatly improve device performance by reducing interface energy barriers and enhancing charge extraction/collection. The performance of inverted PSCs with varied bulk-heterojunctions (BHJs) based on this hybrid nanocomposite CBL was found to be much better than those of control devices with a pure TiOx CBL or without a CBL. An excellent power conversion efficiency up to 9.05% under AM 1.5G irradiation (100 mW·cm-2) was demonstrated, which represents a record high value for inverted PSCs with TiOx-based interface materials.

Electronic Supplementary Material

Download File(s)
12274_2014_615_MOESM1_ESM.pdf (2 MB)

References

1

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324-1338.

2

Servaites, J. D.; Ratner, M. A.; Marks, T. J. Organic solar cells: A new look at traditional models. Energy Environ. Sci. 2011, 4, 4410-4422.

3

Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153-161.

4

Li, K.; Li, Z.; Feng, K.; Xu, X.; Wang, L.; Peng, Q. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J. Am. Chem. Soc. 2013, 135, 13549-13557.

5

Jørgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580-612.

6

Liao, S. -H.; Jhuo, H. -J.; Cheng, Y. -S.; Chen, S. -A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766-4771.

7

Ma, H.; Yip, H. L.; Huang, F.; Jen, A. K. Y. Interface engineering for organic electronics. Adv. Funct. Mater. 2010, 20, 1371-1388.

8

He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591-595.

9

You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. -C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

10

Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. -T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, E135-E138.

11

Yin, Z.; Zhu, J.; He, Q.; Cao, X.; Tan, C.; Chen, H.; Yan, Q.; Zhang, H. Graphene-based materials for solar cell applications. Adv. Energy Mater. 2014, 4, 1300574.

12

Zhang, M.; Gu, Y.; Guo, X.; Liu, F.; Zhang, S.; Huo, L.; Russell, T. P.; Hou, J. Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv. Mater. 2013, 25, 4944-4949.

13

Xiao, Z.; Ye, G.; Liu, Y.; Chen, S.; Peng, Q.; Zuo, Q.; Ding, L. Pushing fullerene absorption into the near-IR region by conjugately fusing oligothiophenes. Angew. Chem. Int. Ed. 2012, 51, 9038-9041.

14

Li, Y. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723-733.

15

Wong, W. -Y.; Wang, X. -Z.; He, Z.; Djurišić, A. B.; Yip, C. -T.; Cheung, K. -Y.; Wang, H.; Mak, C. S. K.; Chan, W. -K. Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat. Mater. 2007, 6, 521-527.

16

Campoy-Quiles, M.; Ferenczi, T.; Agostinelli, T.; Etchegoin, P. G.; Kim, Y.; Anthopoulos, T. D.; Stavrinou, P. N.; Bradley, D. D. C.; Nelson, J. Morphology evolution via self- organization and lateral and vertical diffusion in polymer: fullerene solar cell blends. Nat. Mater. 2008, 7, 158-164.

17

Yin, Z.; Zheng, Q. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2012, 2, 179-218.

18

Lee, B. R.; Jung, E. D.; Nam, Y. S.; Jung, M.; Park, J. S.; Lee, S.; Choi, H.; Ko, S. -J.; Shin, N. R.; Kim, Y. -K.; Kim, S. O.; Kim, J. Y.; Shin, H. -J.; Cho, S.; Song, M. H. Amine- based polar solvent treatment for highly efficient inverted polymer solar cells. Adv. Mater. 2014, 26, 494-500.

19

Chen, S.; Manders, J. R.; Tsang, S. W.; So, F. Metal oxides for interface engineering in polymer solar cells. J. Mater. Chem. 2012, 22, 24202-24212.

20

Song, M.; Park, J. H.; Kim, C. S.; Kim, D. -H.; Kang, Y. -C.; Jin, S. -H.; Jin, W. -Y.; Kang, J. -W. Highly flexible and transparent conducting silver nanowires/ZnO composite film for organic solar cells. Nano Res. 2014, 7, 1370-1379.

21

Li, W.; Furlan, A.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Efficient tandem and triple-junction polymer solar cells. J. Am. Chem. Soc. 2013, 135, 5529-5532.

22

Zhang, F.; Xu, X.; Tang, W.; Zhang, J.; Zhuo, Z.; Wang, J.; Xu, Z.; Wang, Y. Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1785-1799.

23

Williams, G.; Wang, Q.; Aziz, H. The photo-stability of polymer solar cells: Contact photo-degradation and the benefits of interfacial layers. Adv. Funct. Mater. 2013, 23, 2239-2247.

24

Xu, Z.; Chen, L.; Yang, G.; Huang, C. H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C. S.; Yang, Y. Vertical phase separation in poly(3-hexylthiophene): Fullerene derivative blends and its advantage for inverted structure solar cells. Adv. Funct. Mater. 2009, 19, 1227-1234.

25

Motiei, L.; Yao, Y.; Choudhury, J.; Yan, H.; Marks, T. J.; van der Boom, M. E.; Facchetti, A. Self-propagating molecular assemblies as interlayers for efficient inverted bulk- heterojunction solar cells. J. Am. Chem. Soc. 2010, 132, 12528-12530.

26

Yin, Z.; Zheng, Q.; Chen, S.; Cai, D. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 Volt. ACS Appl. Mater. Interfaces 2013, 5, 9015-9025.

27

Yin, Z.; Zheng, Q.; Chen, S.; Cai, D.; Zhou, L.; Zhang, J. Bandgap tunable Zn1-xMgxO thin films as highly transparent cathode buffer layers for high-performance inverted polymer solar cells. Adv. Energy Mater. 2014, 4, 1301404.

28

Wang, D. H.; Kim, J. K.; Seo, J. H.; Park, I.; Hong, B. H.; Park, J. H.; Heeger, A. J. Transferable graphene oxide by stamping nanotechnology: Electron-transport layer for efficient bulk-heterojunction solar cells. Angew. Chem. Int. Ed. 2013, 52, 2874-2880.

29

You, J.; Chen, C. C.; Dou, L.; Murase, S.; Duan, H. S.; Hawks, S. A.; Xu, T.; Son, H. J.; Yu, L.; Li, G.; Yang, Y. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells. Adv. Mater. 2012, 24, 5267-5272.

30

Sun, Y.; Seo, J. H.; Takacs, C. J.; Seifter, J.; Heeger, A. J. Inverted polymer solar cells integrated with a low- temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 2011, 23, 1679-1683.

31

Huang, J.; Yin, Z.; Zheng, Q. Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 2011, 4, 3861- 3877.

32

Waldauf, C.; Morana, M.; Denk, P.; Schilinsky, P.; Coakley, K.; Choulis, S. A.; Brabec, C. J. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 2006, 89, 233517.

33

Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222-225.

34

Zhang, D.; Choy, W. C. H.; Xie, F.; Sha, W. E. I.; Li, X.; Ding, B.; Zhang, K.; Huang, F.; Cao, Y. Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Adv. Funct. Mater. 2013, 23, 4255-4261.

35

Huang, J.; Li, G.; Yang, Y. A semi-transparent plastic solar cell fabricated by a lamination process. Adv. Mater. 2008, 20, 415-419.

36

Jiang, C.; Sun, X.; Zhao, D.; Kyaw, A. K. K.; Li, Y. Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1618-1621.

37

Liu, J.; Shao, S.; Fang, G.; Meng, B.; Xie, Z.; Wang, L. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv. Mater. 2012, 24, 2774-2779.

38

Small, C. E.; Chen, S.; Subbiah, J.; Amb, C. M.; Tsang, S. W.; Lai, T. H.; Reynolds, J. R.; So, F. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat. Photonics 2012, 6, 115-120.

39

Sun, C.; Wu, Y.; Zhang, W.; Jiang, N.; Jiu, T.; Fang, J. Improving efficiency by hybrid TiO2 nanorods with 1, 10- phenanthroline as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 739-744.

40

Kang, H.; Hong, S.; Lee, J.; Lee, K. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 2012, 24, 3005-3009.

41

Choi, H.; Park, J. S.; Jeong, E.; Kim, G. H.; Lee, B. R.; Kim, S. O.; Song, M. H.; Woo, H. Y.; Kim, J. Y. Combination of titanium oxide and a conjugated polyelectrolyte for high- performance inverted-type organic optoelectronic devices. Adv. Mater. 2011, 23, 2759-2763.

42

Jo, S. B.; Lee, J. H.; Sim, M.; Kim, M.; Park, J. H.; Choi, Y. S.; Kim, Y.; Ihn, S. G.; Cho, K. High performance organic photovoltaic cells using polymer-hybridized ZnO nanocrystals as a cathode interlayer. Adv. Energy Mater. 2011, 1, 690-698.

43

Sun, B.; Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 2005, 5, 2408-2413.

44

Lee, H. S.; Kim, D. H.; Cho, J. H.; Hwang, M.; Jang, Y.; Cho, K. Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics. J. Am. Chem. Soc. 2008, 130, 10556-10564.

45

Hu, T.; Li, F.; Yuan, K.; Chen, Y. Efficiency and air- stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers. ACS Appl. Mater. Interfaces 2013, 5, 5763-5770.

46

Wong, K. H.; Mason, C. W.; Devaraj, S.; Ouyang, J.; Balaya, P. Low temperature aqueous electrodeposited TiOx thin films as electron extraction layer for efficient inverted organic solar cells. ACS Appl. Mater. Interfaces 2014, 6, 2679-2685.

47

Yu, J.; Zhao, X.; Zhao, Q. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films 2000, 379, 7-14.

48

Kumar, P. M.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films 2000, 358, 122-130.

49

Tan, Z.; Zhang, W.; Zhang, Z.; Qian, D.; Huang, Y.; Hou, J.; Li, Y. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode. Adv. Mater. 2012, 24, 1476-1481.

50

Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297-302.

51

Shao, S.; Zheng, K.; Pullerits, T.; Zhang, F. Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl. Mater. Interfaces 2013, 5, 380-385.

52

Shi, J.; Liu, Y.; Peng, Q.; Li, Y. ZnO hierarchical aggregates: solvothermal synthesis and application in dye-sensitized solar cells. Nano Res. 2013, 6, 441-448.

53

Thapa, A.; Zai, J.; Elbohy, H.; Poudel, P.; Adhikari, N.; Qian, X.; Qiao, Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154-1163.

54

Li, H.; Wang, J.; Liu, M.; Wang, H.; Su, P.; Wu, J.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007-1017.

55

Guan, B.; Wang, T.; Zeng, S.; Wang, X.; An, D.; Wang, D.; Cao, Y.; Ma, D.; Liu, Y.; Huo, Q. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246-262.

56

Song, H.; Jo, K.; Jung, B.Y.; Jung, G.Y. Fabrication of periodically aligned vertical single-crystalline anatase TiO2 nanotubes with perfect hexagonal open-ends using chemical capping materials. Nano Res. 2014, 7, 104-109.

57

Park, S.; Kim, D.; Lee, C.W.; Seo, S. -D.; Kim, H.J.; Han, H.S.; Hong, K.S.; Kim, D. -W. Surface-area-tuned, quantum- dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res. 2014, 7, 144-153.

Nano Research
Pages 456-468
Cite this article:
Yin Z, Zheng Q, Chen S-C, et al. Solution-derived poly(ethylene glycol)-TiOx nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells. Nano Research, 2015, 8(2): 456-468. https://doi.org/10.1007/s12274-014-0615-8

1051

Views

38

Crossref

N/A

Web of Science

39

Scopus

1

CSCD

Altmetrics

Received: 12 August 2014
Revised: 09 October 2014
Accepted: 18 October 2014
Published: 18 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return