AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection

Lingjun Kong1Zhiyu Ren1( )Nannan Zheng2Shichao Du1Jun Wu1Jingling Tang2Honggang Fu1( )
Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
Department of PharmaceuticsSchool of PharmacyHarbin Medical UniversityHarbin150086China
Show Author Information

Graphical Abstract

Abstract

Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA·mM-1·cm-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications.

Electronic Supplementary Material

Download File(s)
12274_2014_617_MOESM1_ESM.pdf (3.6 MB)

References

1

Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloysfor electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432-19441.

2

Son, J.; Cho, S.; Lee, C.; Lee, Y.; Shim, J. H. Spongelikenanoporous Pd and Pd/Au structures: Facile synthesis and enhanced electrocatalyticactivity. Langmuir 2014, 30, 3579-3588.

3

Kim, M. I.; Ye, Y.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensingplatform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868-2875.

4

Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49-58.

5

Chen, X.; Zhang, J. J.; Xuan, J.; Zhu, J. J. Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor. Nano Res. 2009, 2, 210-219.

6

Wu, P.; Cai, Z. W.; Chen, J.; Zhang, H.; Cai, C. X. Electrochemical measurement of the flux of hydrogen peroxide releasing from RAW 264.7 macrophage cells based on enzyme-attapulgite clay nanohybrids. Biosens. Bioelectron. 2011, 26, 4012-4017.

7

Zhai, D. Y.; Liu, B. R.; Shi, Y.; Pan, L. J.; Wang, Y. Q.; Li, W. B.; Zhang, R.; Yu, G. H. Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 2013, 7, 3540-3546.

8

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.

9

Chen, A. C.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425-5438.

10

Hsu, M. S.; Chen, Y. L.; Lee, C. Y.; Chiu, H. T. Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl. Mater. Interfaces. 2012, 4, 5570-5575.

11

Zhao, Y. T.; Zhang, W. Y.; Lin, Y. H.; Du, D. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 2013, 5, 1121-1126.

12

Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272-282.

13

Kong, L. J.; Ren, Z. Y.; Du, S. C.; Wu, J.; Fu, H. G. Co2Nx/nitrogen-doped reduced graphene oxide for enzymeless glucose detection. Chem. Commun. 2014, 50, 4921-4923.

14

Liu, J.; Zhang, W.; Zhang, H. L.; Yang, Z. Y.; Li, T. R.; Wang, B. D.; Huo, X.; Wang, R.; Chen, H. T. A multifunctional nanoprobe based on Au-Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013, 49, 4938-4940.

15

Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett. 2012, 12, 4859-4863.

16

Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified inalkaline media. J. Am. Chem. Soc. 2014, 136, 11452-11464.

17

Wan, P. B.; Yin, S. Y.; Liu, L. L.; Li, Y. G.; Liu, Y. J.; Wang, X. T.; Leow, W. R.; Ma, B.; Chen, X. D. Graphenecarrier for magneto-controllable bioelectrocatalysis. Small 2014, 10, 647-652.

18

Liu, L.; Wang, N.; Cao, X.; Guo, L. Direct electrochemistry of cytochrome c at a hierarchically nanostructured TiO2 quantum electrode. Nano Res. 2010, 3, 369-378.

19

Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheetsas a methanol- tolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408-2412.

20

Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan- Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymelessglucose detection. ACS Nano 2012, 6, 3206-3213.

21

Wang, X. W.; Dong, X. C.; Wen, Y. Q.; Li, C. M.; Xiong, Q. H.; Chen, P. A graphene-cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chem. Commun. 2012, 48, 6490-6492.

22

Li, S. S.; Cong, H. P.; Wang, P.; Yu, S. H. Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity. Nanoscale 2014, 6, 7534-7541.

23

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

24

Niu, Z. Q.; Liu, L. L.; Zhang, L.; Shao, Q.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. A universal strategy to prepare functional porous graphenehybrid architectures. Adv. Mater. 2014, 26, 3681-3687.

25

Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861-871.

26

Cui, C. H.; Yu, J. W.; Li, H. H.; Gao, M. R.; Liang, H. W.; Yu, S. H. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes. ACS Nano 2011, 5, 4211-4218.

27

Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem. Int. Ed. 2014, 53, 4561-4566.

28

Xie, J. L.; Guo, C. X.; Li, C. M. Construction of one- dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559-2579.

29

Yin, S. Y.; Wu, Y. L.; Hu, B. H.; Wang, Y.; Cai, P. Q.; Tan, C. K.; Qi, D. P.; Zheng, L. Y.; Leow, W. R.; Tan, N. S. et al. Three-dimensional graphene composite macroscopic structures for capture of cancer cells. Adv. Mater. Interfaces 2014, 1, 1300043.

30

Yang, Y. Q.; Asiri, A. M.; Tang, Z. W.; Du, D.; Lin, Y. H. Graphene based materials for biomedical applications. Mater. Today 2013, 16, 365-373.

31

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Chen, X. D. Structural diversity of bulky graphenematerials. Small 2014, 10, 2200- 2214.

32

Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermalreduction of chemically exfoliated graphenesheets. J. Am. Chem. Soc. 2009, 131, 9910-9911.

33

Jiang, J.; Li, L. C. Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 2007, 61, 4894-4896.

34

Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphenesheets into hierarchical structures for high- performance energy storage. ACS Nano 2011, 5, 3831-3838.

35

Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25- graphenecomposite as a high performance photocatalyst. ACS Nano 2010, 4, 380-386.

36

Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155-158.

37

Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280-9283.

38

Zhong, Z. Y.; Ng, V.; Luo, J. Z.; Teh, S. P.; Teo, J.; Gedanken, A. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture. Langmuir 2007, 23, 5971-5977.

39

Heli, H.; Pishahang, J. Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim. Acta 2014, 123, 518-526.

40

Tabrizi, M. A.; Lahiji, A. A. S. Self-assembling of Prussian blue nanocubic particles on nanoporous glassy carbon and its use in the electrocatalytic reduction of hydrogen peroxide. J. Iran. Chem. Soc. 2014, 11, 1015-1020.

41

Xiao, F.; Li, Y. Q.; Zan, X. L.; Liao, K.; Xu, R.; Duan, H. W. Growth of metal-metal oxide nanostructures on freestanding graphenepaper for flexible biosensors. Adv. Funct. Mater. 2012, 22, 2487-2494.

42

Wu, P.; Qian, Y. D.; Du, P.; Zhang, H.; Cai, C. X. Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J. Mater. Chem. 2012, 22, 6402-6412.

Nano Research
Pages 469-480
Cite this article:
Kong L, Ren Z, Zheng N, et al. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Research, 2015, 8(2): 469-480. https://doi.org/10.1007/s12274-014-0617-6

741

Views

132

Crossref

N/A

Web of Science

135

Scopus

8

CSCD

Altmetrics

Received: 09 September 2014
Revised: 13 September 2014
Accepted: 18 October 2014
Published: 29 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return