AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel

Jinming Zhang1Ruie Chen1Xiefan Fang2Fengqian Chen1Yitao Wang1( )Meiwan Chen1( )
State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao999078China
Department of PediatricsCollege of MedicineUniversity of Florida, GainesvilleFL32610USA
Show Author Information

Graphical Abstract

Abstract

Targeted drug delivery coupled with rapid drug release in cytoplasm is a powerful strategy to enhance efficacy and reduce off-target effects of anti-cancer drugs. Herein, we describe a dual-functional mixed micellar system consisting of a pH-responsive copolymer D-α-tocopheryl polyethylene glycol 1000-blockpoly-(β-amino ester) (TPGS-b-PBAE, TP) and AS1411 aptamer (Apt) decorated TPGS polymer (Apt-TPGS), which recognizes the over-expressed nucleolin on the plasma membrane of cancer cells. The anti-cancer drug paclitaxel (PTX) was encapsulated in the Apt-mixed micelles, and these drug-loaded micelles had a suitable particle size and zeta potential of 116.3 nm ± 12.4 nm and -26.2 mV ±4.2 mV, respectively. PTX/Apt-mixed micelles were stable at pH 7.4, but they dissociated and quickly released the encapsulated PTX in a weakly acidic environment (pH 5.5). Compared with non-Apt modified mixed micelles, more Apt-modified mixed micelles were internalized in SKOV3 ovarian cancer cells, whereas no significant difference in cellular uptake was observed in normal cells (LO2 cells). The enhanced transmembrane ability of Apt-modified mixed micelles was achieved through Apt-nucleolin interaction. With a synergistic effect of cancer cell recognition and pH-sensitive drug release, we observed significantly increased cytotoxicity and G2/M phase arrest against SKOV3 cells by PTX/Apt-mixed micelles. Intravenous administration of PTX/Apt-mixed micelles for 16 days significantly increased tumor accumulation of PTX, inhibited tumor growth, and reduced myelosuppression on tumor-bearing mice compared with free PTX injection. Therefore, this dual-functional Apt-mixed micellar system is a promising drug delivery system for targeted cancer therapy.

Electronic Supplementary Material

Download File(s)
12274_2014_619_MOESM1_ESM.pdf (884.2 KB)

References

1

Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA: Cancer J. Clin. 2012, 62, 10-29.

2

Kumar, S.; Mahdi, H.; Bryant, C.; Shah, J. P.; Garg, G.; Munkarah, A. Clinical trials and progress with paclitaxel in ovarian cancer. Int. J. Women's. Health 2010, 2, 411-427.

3

Zhang, Z. P.; Mei, L.; Feng, S. S. Paclitaxel drug delivery systems. Expert Opin. Drug Delivery 2013, 10, 325-340.

4

Torne, S. J.; Ansari, K. A.; Vavia, P. R.; Trotta, F.; Cavalli, R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Delivery 2010, 17, 419-425.

5

Paál, K.; Müller, J.; Hegedûs, L. High affinity binding of paclitaxel to human serum albumin. Eur. J. Biochem. 2001, 268, 2187-2191.

6

Weiss, R. B.; Donehower, R.; Wiernik, P.; Ohnuma, T.; Gralla, R.; Trump, D.; Baker, J.; Van Echo, D.; Von Hoff, D.; Leyland-Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990, 8, 1263-1268.

7

Szebeni, J.; Alving, C. R.; Muggia, F. M. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: An in vitro study. J. Natl. Cancer Inst. 1998, 90, 300-306.

8

Scripture, C. D.; Figg, W. D.; Sparreboom, A. Paclitaxel chemotherapy: From empiricism to a mechanism-based formulation strategy. Ther. Clin. Risk Manag. 2005, 1, 107.

9

Singla, A. K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179-192.

10

Nakamura, T.; Akita, H.; Yamada, Y.; Hatakeyama, H.; Harashima, H. A multifunctional envelope-type nanodevice for use in nanomedicine: Concept and applications. Acc. Chem. Res. 2012, 45, 1113-1121.

11

Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1-9.

12

Liu, S. Y.; Chang, C. N.; Verma, M. S.; Hileeto, D.; Muntz, A.; Stahl, U.; Woods, J.; Jones, L. W.; Gu, F. X. Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentally-induced dry eye syndrome. Nano Res. in press, DOI: 10.1007/s12274-014-0547-3.

13

Zhang, L.; Wang, W.; Jiang, D.; Gao, E.; Sun, S. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. in press, DOI: 10.1007/s12274-014-0564-2.

14

Ma, P.; Mumper, R. J. Paclitaxel nano-delivery systems: A comprehensive review. J. Nanomed. Nanotechnol. 2013, 4, 1000164.

15

Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012, 41, 2971-3010.

16

Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012, 7, 467-480.

17

Shen, M.; Huang, Y.; Han, L.; Qin, J.; Fang, X.; Wang, J.; Yang, V. C. Multifunctional drug delivery system for targeting tumor and its acidic microenvironment. J. Control Release 2012, 161, 884-892.

18

Barbas, A. S.; Mi, J.; Clary, B. M.; White, R. R. Aptamer applications for targeted cancer therapy. Future Oncology 2010, 6, 1117-1126.

19

Farokhzad, O. C.; Karp, J. M.; Langer, R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv. 2006, 3, 311-324.

20

Bates, P. J.; Laber, D. A.; Miller, D. M.; Thomas, S. D.; Trent, J. O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 2009, 86, 151-164.

21

Keefe, A. D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537-550.

22

Ireson, C. R.; Kelland, L. R. Discovery and development of anticancer aptamers. Mol. Cancer Ther. 2006, 5, 2957-2962.

23

Dapić, V.; Bates, P. J.; Trent, J. O.; Rodger, A.; Thomas, S. D.; Miller, D. M. Antiproliferative activity of G-quartet-forming oligonucleotides with backbone and sugar modifications. Biochemistry 2002, 41, 3676-3685.

24

Cao, Z.; Tong, R.; Mishra, A.; Xu, W.; Wong, G. C.; Cheng, J.; Lu, Y. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Edit. 2009, 48, 6494-6498.

25

Guo, J.; Gao, X.; Su, L.; Xia, H.; Gu, G.; Pang, Z.; Jiang, X.; Yao, L.; Chen, J.; Chen, H. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011, 32, 8010-8020.

26

Wu, J.; Song, C.; Jiang, C.; Shen, X.; Qiao, Q.; Hu, Y. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol. Pharm. 2013, 10, 3555-3563.

27

Aravind, A.; Jeyamohan, P.; Nair, R.; Veeranarayanan, S.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Kumar, D. S. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol. Bioeng. 2012, 109, 2920-2931.

28

Shen, Y.; Tang, H.; Radosz, M.; Van Kirk, E.; Murdoch, W. J. pH-responsive nanoparticles for cancer drug delivery. Methods Mol Biol. 2008, 437, 183-216.

29

Deng, C.; Jiang, Y. J.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012, 7, 467-480.

30

Lee, E. S.; Gao, Z.; Bae, Y. H. Recent progress in tumor pH targeting nanotechnology. J. Control Release 2008, 132, 164-170.

31

Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control Release 2008, 126, 187-204.

32

Ulbrich, K.; Šubr, V. R. Polymeric anticancer drugs with ph-controlled activation. Adv. Drug Deliv. Rev. 2004, 56, 1023-1050.

33

Shenoy, D.; Little, S.; Langer, R.; Amiji, M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 2. In vivo distribution and tumor localization studies. Pharm. Res. 2005, 22, 2107-2114.

34

Devalapally, H.; Shenoy, D.; Little, S.; Langer, R.; Amiji, M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: Part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother. Pharmacol. 2007, 59, 477-484.

35

Potineni, A.; Lynn, D. M.; Langer, R.; Amiji, M. M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J. Control. Release 2003, 86, 223-234.

36

Zhao, S.; Tan, S.; Guo, Y.; Huang, J.; Chu, M.; Liu, H.; Zhang, Z. P. pH-sensitive docetaxel-loaded D-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules 2013, 14, 2636-2646.

37

Shen, Y.; Tang, H.; Zhan, Y.; Van Kirk, E. A.; Murdoch, W. J. Degradable poly(β-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine: NBM 2009, 5, 192-201.

38

Zhang, Z. P.; Tan, S. W.; Feng, S. S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012, 33, 4889-4906.

39

Zhang, J.; Li, Y.; Gao, W.; Repka, M. A.; Wang, Y.; Chen, M. Andrographolide-loaded PLGA-PEG-PLGA micelles to improve its bioavailability and anticancer efficacy. Expert Opin. Drug Deliv. 2014, 11, 1367-1380.

40

Yin, H.; Lee, E. S.; Kim, D.; Lee, K. H.; Oh, K. T.; Bae, Y. H. Physicochemical characteristics of pH-sensitive poly(L-Histidine)-b-poly(ethylene glycol)/poly(L-Lactide)-b-poly(ethylene glycol) mixed micelles. J. Control Release 2008, 126, 130-138.

41

Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 2004, 4, 253-265.

42

Bacus, S. S.; Gudkov, A. V.; Lowe, M.; Lyass, L.; Yung, Y.; Komarov, A. P.; Keyomarsi, K.; Yarden, Y.; Seger, R. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001, 20, 147-155.

43

Zhang, Z.; Feng, S. S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006, 27, 4025-4033.

44

Guo, Y.; Luo, J.; Tan, S.; Otieno, B. O.; Zhang, Z. P.; Tan, S. W.; Feng, S. S. The applications of Vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 2013, 49, 175-186.

45

Wu, J. Statistical inference for tumor growth inhibition T/C ratio. J. Biopharm. Stat. 2010, 20, 954-964.

46

Crawford, J.; Dale, D. C.; Lyman, G. H. Chemotherapy-induced neutropenia. Cancer 2004, 100, 228-237.

47

Crowley, K.; Augustin, K. Chemotherapy-induced anemia. U.S. Pharmacist 2003, 28, 04.

48

Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010, 624, 25-37.

49

Ilium, L.; Davis, S.; Wilson, C.; Thomas, N.; Frier, M.; Hardy, J. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int. J. Pharm. 1982, 12, 135-146.

50

Barenholz, Y.; Amselem, S.; Goren, D.; Cohen, R.; Gelvan, D.; Samuni, A.; Golden, E. B.; Gabizon, A. Stability of liposomal doxorubicin formulations: Problems and prospects. Med. Res. Rev. 1993, 13, 449-491.

51

Zhang, L.; Yang, M.; Wang, Q.; Li, Y.; Guo, R.; Jiang, X.; Yang, C.; Liu, B. 10-Hydroxycamptothecin loaded nanoparticles: Preparation and antitumor activity in mice. J. Control. Release 2007, 119, 153-162.

Nano Research
Pages 201-218
Cite this article:
Zhang J, Chen R, Fang X, et al. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Research, 2015, 8(1): 201-218. https://doi.org/10.1007/s12274-014-0619-4
Part of a topical collection:

1038

Views

71

Crossref

N/A

Web of Science

76

Scopus

0

CSCD

Altmetrics

Received: 12 September 2014
Revised: 18 October 2014
Accepted: 20 October 2014
Published: 03 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return