AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in chemical modifications of graphene

Sunil P. Lonkar1Yogesh S. Deshmukh2Ahmed A. Abdala1,( )
Department of Chemical EngineeringThe Petroleum InstituteAbu DhabiPO Box 2533UAE
Faculty of Humanities and SciencesMaastricht Science Programme, Maastricht University, MinderbroedersbergLK, Maastricht4-6, 6211the Netherlands

Present address: Department of Petroleum Refining and Chemical Engineering, Suez University, Suez, Egypt.

Show Author Information

Graphical Abstract

Abstract

Graphene has attracted the interest of chemists, physicists, and materials scientists due to its extraordinary structural, mechanical, and electronic properties. While pristine graphene is desirable for applications that require a high electrical conductivity, many other applications require modified or functionalized forms of graphene, such as graphene oxide, reduced graphene, or other functionalized forms. Structurally modifying graphene through chemical functionalization reveals the numerous possibilities for tuning its structure; several chemical and physical functionalization methods have been explored to improve the stabilization and modification of graphene. In this review, we report recent progress towards the chemical modification of graphene, including both covalent and noncovalent methods, for use in various applications.

Electronic Supplementary Material

Download File(s)
12274_2014_622_MOESM1_ESM.pdf (393.9 KB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

3

Lightcap, I. V.; Kamat, P. V. Graphitic design: Prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 2013, 46, 2235–2243.

4

Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5, 3112–3126.

5

Liu, J. Q.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013, 9, 9243–9257.

6

Yang, Y. Q.; Asiri, A. M.; Tang, Z. W.; Du, D.; Lin, Y. H. Graphene based materials for biomedical applications. Mater. Today 2013, 16, 365–373.

7

Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648.

8

Ma, H. M.; Wu, D.; Cui, Z. T.; Li, Y.; Zhang, Y.; Du, B.; Wei, Q. Graphene-based optical and electrochemical biosensors: A review. Anal. Lett. 2013, 46, 1–17.

9

Du, J. H.; Cheng, H. M. The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 2012, 213, 1060–1077.

10

Kuilla, T.; Bhadra, S.; Yao, D. H.; Kim, N. H.; Bose, S.; Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.

11

Iwan, A.; Chuchmała, A. Perspectives of applied graphene: Polymer solar cells. Prog. Polym. Sci. 2012, 37, 1805–1828.

12

Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157.

13

Pumera, M. Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 2011, 4, 668–674.

14

Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 2014, 26, 615–619.

15

Areshkin, D. A.; White, C. T. Building blocks for integrated graphene circuits. Nano Lett. 2007, 7, 3253–3259.

16

Li, S. L.; Miyazaki, H.; Kumatani, A.; Kanda, A.; Tsukagoshi, K. Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 2010, 10, 2357–2362.

17

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

18

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

19

Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

20

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

21

Zhang, J. L.; Shen, G. X.; Wang, W. J.; Zhou, X. J.; Guo, S. W. Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): Preparation and humidity sensing characteristics. J. Mater. Chem. 2010, 20, 10824–10828.

22

Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

23

Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.

24

Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.

25

Bai, H.; Xu, Y. X.; Zhao, L.; Li, C.; Shi, G. Q. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem. Commun. 2009, 45, 1667–1669.

26

Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Organic functionalisation of graphenes. Chem. Commun. 2010, 46, 1766–1768.

27

Hirsch, A.; Englert, J. M.; Hauke, F. Wet chemical functionalization of graphene. Acc. Chem. Res. 2013, 46, 87–96.

28

Liu, J. Q.; Tang, J. G.; Gooding, J. J. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435–12452.

29

Park, J.; Yan, M. D. Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2013, 46, 181–189.

30

Quintana, M.; Vazquez, E.; Prato, M. Organic functionalization of graphene in dispersions. Acc. Chem. Res. 2013, 46, 138–148.

31

Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014, 26, 40–67.

32

Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

33

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

34

Krishnamoorthy, K.; Kim, G. S.; Kim, S. J. Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrason. Sonochem. 2013, 20, 644–649.

35

Green, A. A.; Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 2009, 9, 4031–4036.

36

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

37

Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

38

Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339.

39

Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.

40

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

41

Sutter, P. Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 2009, 8, 171–172.

42

Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

43

Varykhalov, A.; Rader, O. Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 2009, 80, 035437.

44

Yamada, T.; Kim, J.; Ishihara, M.; Hasegawa, M. Low-temperature graphene synthesis using microwave plasma CVD. J. Phys. D: Appl. Phys. 2013, 46, 063001.

45

Varchon, F.; Feng, R.; Hass, J.; Li, X.; Ngoc Nguyen, B.; Naud, C.; Mallet, P.; Veuillen, J. Y.; Berger, C.; Conrad, E. H. et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

46

Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

47

Park, S.; An, J; Jung, I.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

48

Wu, Y. H.; Yu, T.; Shen, Z. X. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 2010, 108, 071301.

49

Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

50

Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

51

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

52

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

53

Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992.

54

Sheshmani, S.; Fashapoyeh, M. A. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chim. Slov. 2013, 60, 813–825.

55

Wang, S.; Chia, P. J.; Chua, L. L.; Zhao, L. H.; Png, R. Q.; Sivaramakrishnan, S.; Zhou, M.; Goh, R. G. S.; Friend, R. H.; Wee, A. T. S. et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv. Mater. 2008, 20, 3440–3446.

56

Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.

57

Pham, V. H.; Cuong, T. V.; Nguyen-Phan, T. D.; Pham, H. D.; Kim, E. J.; Hur, S. H.; Shin, E. W.; Kim, S.; Chung, J. S. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 2010, 46, 4375–4377.

58

Zhou, X. J.; Zhang, J. L.; Wu, H. X.; Yang, H. J.; Zhang, J. Y.; Guo, S. W. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene. J. Phys. Chem. C 2011, 115, 11957–11961.

59

Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Dong, S. J. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

60

Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

61

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

62

Compton, O. C.; Jain, B.; Dikin, D. A.; Abouimrane, A.; Amine, K.; Nguyen, S. T. Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 2011, 5, 4380–4391.

63

Sundaram, R. S.; Gómez-Navarro, C.; Balasubramanian, K.; Burghard, M.; Kern, K. Electrochemical modification of graphene. Adv. Mater. 2008, 20, 3050–3053.

64

Zhou, M.; Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren, W.; Wang, F. A.; Dong, S. J. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. -Eur. J. 2009, 15, 6116–6120.

65

Rao, C. N. R.; Subrahmanyam, K. S.; Ramakrishna Matte, H. S. S.; Abdulhakeem, B.; Govindaraj, A.; Das, B.; Kumar, P.; Ghosh, A.; Late, D. J. A study of the synthetic methods and properties of graphenes. Sci. Technol. Adv. Mater. 2010, 11, 054502.

66

Zhang, Y. L.; Guo, L.; Xia, H.; Chen, Q. D.; Feng, J.; Sun, H. B. Photoreduction of graphene oxides: Methods, properties, and applications. Adv. Opt. Mater. 2014, 2, 10–28.

67

Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, I. I.; Blake, P.; Booth, T. J.; Jiang, D. et al. Electronic properties of graphene. Phys. Status Solidi B 2007, 244, 4106–4111.

68

Ando, T. The electronic properties of graphene and carbon nanotubes. Npg Asia Mater. 2009, 1, 17–21.

69

Hwang, E. H.; Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 2008, 77, 115449.

70

Vasko, F. T.; Ryzhii, V. Voltage and temperature dependencies of conductivity in gated graphene. Phys. Rev. B 2007, 76, 233404.

71

Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

72

Reddy, C. D.; Rajendran, S.; Liew, K. M. Equilibrium configuration and continuum elastic properties of finite sized graphene. Nanotechnology 2006, 17, 864–870.

73

Zhang, Y. Y.; Gu, Y. T. Mechanical properties of graphene: Effects of layer number, temperature and isotope. Comput. Mater. Sci. 2013, 71, 197–200.

74

Bertolazzi, S.; Brivio, J.; Radenovic, A.; Kis, A.; Wilson, H.; Prisbrey, L.; Minot, E.; Tselev, A.; Philips, M.; Viani, M. et al. Exploring flatland: AFM of mechanical and electrical properties of graphene, MoS2 and other low-dimensional materials. Microsc. Anal. 2013, 27, 21–24.

75

Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

76

Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

77

Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.

78

Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.

79

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308–1308.

80

Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W. et al. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

81

Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

82

Chen, J. H.; Ishigami, M.; Jang, C.; Hines, D. R.; Fuhrer, M. S.; Williams, E. D. Printed graphene circuits. Adv. Mater. 2007, 19, 3623–3627.

83

Koh, W. S.; Gan, C. H.; Phua, W. K.; Akimov, Y. A.; Bai, P. The potential of graphene as an ITO replacement in organic solar cells: An optical perspective. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 4000107.

84

Pang, S. P.; Hernandez, Y.; Feng, X. L.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795.

85

Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

86

Shen, Y.; Yang, S. B.; Zhou, P.; Sun, Q. Q.; Wang, P. F.; Wan, L.; Li, J.; Chen, L. Y.; Wang, X.; Ding, S. J. et al. Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level. Carbon 2013, 62, 157–164.

87

Pop, E.; Varshney, V.; Roy, A. K. Thermal properties of graphene: Fundamentals and applications. MRS Bull. 2012, 37, 1273–1281.

88

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

89

Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555–558.

90

Ghosh, S.; Nika, D. L.; Pokatilov, E. P.; Balandin, A. A. Heat conduction in graphene: Experimental study and theoretical interpretation. New J. Phys. 2009, 11, 095012.

91

Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 2010, 4, 1949–1954.

92

Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337.

93

Jin, Z.; Lomeda, J. R.; Katherine Price, B.; Lu, W.; Zhu, Y.; Tour, J. M. Mechanically assisted exfoliation and functionalization of thermally converted graphene sheets. Chem. Mater. 2009, 21, 3045–3047.

94

Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

95

Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010, 10, 398–405.

96

Zakir Hossain, M.; Walsh, M. A.; Hersam, M. C. Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J. Am. Chem. Soc. 2010, 132, 15399–15403.

97

Fang, M.; Wang, K. G.; Lu, H. B.; Yang, Y. L.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105.

98

Feng, Y. Y.; Liu, H. P.; Luo, W.; Liu, E. Z.; Zhao, N. Q.; Yoshino, K.; Feng, W. Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage. Sci. Rep. 2013, 3, 3260.

99

Liu, H. T.; Ryu, S.; Chen, Z. Y.; Steigerwald, M. L.; Nuckolls, C.; Brus, L. E. Photochemical reactivity of graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101.

100

Wang, Q. H.; Shih, C. J.; Paulus, G. L. C.; Strano, M. S. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization. J. Am. Chem. Soc. 2013, 135, 18866–18875.

101

Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845.

102

Cioffi, C.; Campidelli, S.; Brunetti, F. G.; Meneghetti, M.; Prato, M. Functionalisation of carbon nanohorns. Chem. Commun. 2006, 2129–2131.

103

Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Mateo-Alonso, A.; Prato, M. Multipurpose organically modified carbon nanotubes: From functionalization to nanotube composites. J. Am. Chem. Soc. 2008, 130, 8733–8740.

104

Castelaín, M.; Martínez, G.; Merino, P.; Martín-Gago, J. á.; Segura, J. L.; Ellis, G.; Salavagione, H. J. Graphene functionalisation with a conjugated poly(fluorene) by click coupling: Striking electronic properties in solution. Chem. -Eur. J. 2012, 18, 4965–4973.

105

Zhang, X. Y.; Hou, L. L.; Cnossen, A.; Coleman, A. C.; Ivashenko, O.; Rudolf, P.; van Wees, B. J.; Browne, W. R.; Feringa, B. L. One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. -Eur. J. 2011, 17, 8957–8964.

106

Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. Functionalization of graphene via 1, 3-dipolar cycloaddition. ACS Nano 2010, 4, 3527–3533.

107

Liu, L. H.; Lerner, M. M.; Yan, M. D. Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 2010, 10, 3754–3756.

108

Strom, T. A.; Dillon, E. P.; Hamilton, C. E.; Barron, A. R. Nitrene addition to exfoliated graphene: A one-step route to highly functionalized graphene. Chem. Commun. 2010, 46, 4097–4099.

109

Xu, L. Q.; Yee, Y. K.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Cyclodextrin-functionalized graphene nanosheets, and their host-guest polymer nanohybrids. Polymer 2013, 54, 2264–2271.

110

He, H. K.; Gao, C. General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater. 2010, 22, 5054–5064.

111

Choi, J.; Kim, K. J.; Kim, B.; Lee, H.; Kim, S. Covalent functionalization of epitaxial graphene by azidotrimethylsilane. J. Phys. Chem. C 2009, 113, 9433–9435.

112

Zhong, X.; Jin, J.; Li, S. W.; Niu, Z. Y.; Hu, W. Q.; Li, R.; Ma, J. T. Aryne cycloaddition: Highly efficient chemical modification of graphene. Chem. Commun. 2010, 46, 7340–7342.

113

Sarkar, S.; Bekyarova, E.; Niyogi, S.; Haddon, R. C. Diels-Alder chemistry of graphite and graphene: Graphene as diene and dienophile. J. Am. Chem. Soc. 2011, 133, 3324–3327.

114

Mallakpour, S.; Abdolmaleki, A.; Borandeh, S. Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl. Surf. Sci. 2014, 307, 533–542.

115

Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

116

Yang, K.; Zhang, S. A.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. A. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

117

Fan, Z. J.; Wang, J. Q.; Wang, Z. F.; Li, Z. P.; Qiu, Y. N.; Wang, H. G.; Xu, Y.; Niu, L. Y.; Gong, P. W.; Yang, S. R. Casein phosphopeptide-biofunctionalized graphene biocomposite for hydroxyapatite biomimetic mineralization. J. Phys. Chem. C 2013, 117, 10375–10382.

118

Depan, D.; Pesacreta, T. C.; Misra, R. D. K. The synergistic effect of a hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblast functions. Biomater Sci-Uk 2014, 2, 264–274.

119

Liu, H. Y.; Kuila, T.; Kim, N. H.; Ku, B. C.; Lee, J. H. In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 2013, 1, 3739–3746.

120

Liu, Y.; Li, Q.; Feng, Y. Y.; Ji, G. S.; Li, T. C.; Tu, J.; Gu, X. D. Immobilisation of acid pectinase on graphene oxide nanosheets. Chem. Pap. 2014, 68, 732–738.

121

Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 2009, 25, 12030–12033.

122

Liu, H. D.; Liu, Z. Y.; Yang, M. B.; He, Q. Surperhydrophobic polyurethane foam modified by graphene oxide. J. Appl. Polym. Sci. 2013, 130, 3530–3536.

123

Karousis, N.; Sandanayaka, A. S. D.; Hasobe, T.; Economopoulos, S. P.; Sarantopoulou, E.; Tagmatarchis, N. Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties. J. Mater. Chem. 2011, 21, 109–117.

124

Liu, Z. B.; Xu, Y. F.; Zhang, X. Y.; Zhang, X. L.; Chen, Y. S.; Tian, J. G. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 2009, 113, 9681–9686.

125

Zhu, J. H.; Li, Y. X.; Chen, Y.; Wang, J.; Zhang, B.; Zhang, J. J.; Blau, W. J. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 2011, 49, 1900–1905.

126

Long, F.; Zhu, A. N.; Shi, H. C.; Wang, H. C. Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules. Anal. Chem. 2014, 86, 2862–2866.

127

Konkena, B.; Vasudevan, S. Covalently linked, water-dispersible, cyclodextrin: Reduced-graphene oxide sheets. Langmuir 2012, 28, 12432–12437.

128

Xue, Y. H.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. M. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett. 2012, 3, 1607–1612.

129

Yu, D. S.; Yang, Y.; Durstock, M.; Baek, J. B.; Dai, L. M. Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 2010, 4, 5633–5640.

130

Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D. W.; Dai, L. M.; Baek, J. B. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 2012, 6, 1715–1723.

131

Devi, R.; Prabhavathi, G.; Yamuna, R.; Ramakrishnan, S.; Kothurkar, N. K. Synthesis, characterization and photoluminescence properties of graphene oxide functionalized with azo molecules. J. Chem. Sci. 2014, 126, 75–83.

132

Sayyar, S.; Murray, E.; Thompson, B. C.; Gambhir, S.; Officer, D. L.; Wallace, G. G. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 2013, 52, 296–304.

133

Cheng, H. K. F.; Sahoo, N. G.; Tan, Y. P.; Pan, Y. Z.; Bao, H. Q.; Li, L.; Chan, S. H.; Zhao, J. H. Poly(vinyl alcohol) nanocomposites filled with poly(vinyl alcohol)-grafted graphene oxide. ACS Appl. Mater. Inter. 2012, 4, 2387–2394.

134

Shen, J. F.; Li, N.; Shi, M.; Hu, Y. Z.; Ye, M. X. Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid Interf. Sci. 2010, 348, 377–383.

135

Li, W. X.; Xu, Z. W.; Chen, L.; Shan, M. J.; Tian, X.; Yang, C. Y.; Lv, H. M.; Qian, X. M. A facile method to produce graphene oxide-g-poly(L-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem. Eng. J. 2014, 237, 291–299.

136

Lo, C. W.; Zhu, D. F.; Jiang, H. R. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter. 2011, 7, 5604–5609.

137

Xu, G. B.; Chen, X. Y.; Hu, J. H.; Yang, P. Y.; Yang, D.; Wei, L. M. Immobilization of trypsin on graphene oxide for microwave-assisted on-plate proteolysis combined with MALDI-MS analysis. Analyst 2012, 137, 2757–2761.

138

Zhou, J. T.; Yao, Z. J.; Chen, Y. X.; Wei, D. B.; Xu, T. S. Fabrication and mechanical properties of phenolic foam reinforced with graphene oxide. Polym. Composite 2014, 35, 581–586.

139

Gaspar, H.; Pereira, C.; Rebelo, S. L. H.; Pereira, M. F. R.; Figueiredo, J. L.; Freire, C. Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon 2011, 49, 3441–3453.

140

Matsuo, Y.; Fukunaga, T.; Fukutsuka, T.; Sugie, Y. Silylation of graphite oxide. Carbon 2004, 42, 2117–2119.

141

Yang, H. F.; Li, F. H.; Shan, C. S.; Han, D. X.; Zhang, Q. X.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater. Chem. 2009, 19, 4632–4638.

142

Chen, L.; Jin, H.; Xu, Z. W.; Shan, M. J.; Tian, X.; Yang, C. Y.; Wang, Z.; Cheng, B. W. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface. Mater. Chem. Phys. 2014, 145, 186–196.

143

Zhang, W. F.; Wang, S. S.; Ji, J. Y.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Primary and tertiary amines bifunctional graphene oxide for cooperative catalysis. Nanoscale 2013, 5, 6030–6033.

144

Hou, S. F.; Su, S. J.; Kasner, M. L.; Shah, P.; Patel, K.; Madarang, C. J. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem. Phys. Lett. 2010, 501, 68–74.

145

Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461.

146

Yuan, F. Y.; Zhang, H. B.; Li, X. F.; Ma, H. L.; Li, X. Z.; Yu, Z. Z. In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites. Carbon 2014, 68, 653–661.

147

Wu, L. S.; Zhang, B. Q.; Lu, H.; Liu, C. Y. Nanoscale ionic materials based on hydroxyl-functionalized graphene. J. Mater. Chem. A 2014, 2, 1409–1417.

148

Ballesteros-Garrido, R.; Rodriguez, R.; Alvaro, M.; Garcia, H. Photochemistry of covalently functionalized graphene oxide with phenothiazinyl units. Carbon 2014, 74, 113–119.

149

Zhang, H. C.; Ma, X.; Nguyen, K. T.; Zeng, Y. F.; Tai, S. H.; Zhao, Y. L. Water-soluble pillararene-functionalized graphene oxide for in vitro Raman and fluorescence dual-mode imaging. ChemPlusChem 2014, 79, 462–469.

150

Park, S.; Hu, Y.; Hwang, J. O.; Lee, E. S.; Casabianca, L. B.; Cai, W. W.; Potts, J. R.; Ha, H. W.; Chen, S. S.; Oh, J. et al. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat. Commun. 2012, 3, 638.

151

Gilje, S.; Dubin, S.; Badakhshan, A.; Farrar, J.; Danczyk, S. A.; Kaner, R. B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater. 2010, 22, 419–423.

152

Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.

153

Gao, X. F.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 2010, 114, 832–842.

154

Ghaderi, N.; Peressi, M. First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J. Phys. Chem. C 2010, 114, 21625–21630.

155

Iqbal, M. Z.; Katsiotis, M. S.; Alhassan, S. M.; Liberatore, M. W.; Abdala, A. A. Effect of solvent on the uncatalyzed synthesis of aminosilane-functionalized graphene. RSC Adv. 2014, 4, 6830–6839.

156

Wang, D. R.; Ye, G.; Wang, X. L.; Wang, X. G. Graphene functionalized with Azo polymer brushes: Surface-initiated polymerization and photoresponsive properties. Adv. Mater. 2011, 23, 1122–1125.

157

Azevedo, J.; Fillaud, L.; Bourdillon, C.; Noel, J. M.; Kanoufi, F.; Jousselme, B.; Derycke, V.; Campidelli, S.; Cornut, R. Localized reduction of graphene oxide by electrogenerated naphthalene radical anions and subsequent diazonium electrografting. J. Am. Chem. Soc. 2014, 136, 4833–4836.

158

Srinivas, G.; Burress, J. W.; Ford, J.; Yildirim, T. Porous graphene oxide frameworks: Synthesis and gas sorption properties. J. Mater. Chem. 2011, 21, 11323–11329.

159

Sudeep, P. M.; Narayanan, T. N.; Ganesan, A.; Shaijumon, M. M.; Yang, H.; Ozden, S.; Patra, P. K.; Pasquali, M.; Vajtai, R.; Ganguli, S. et al. Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 2013, 7, 7034–7040.

160

Hsiao, M. C.; Liao, S. H.; Yen, M. Y.; Liu, P. I.; Pu, N. W.; Wang, C. A.; Ma, C. C. M. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl. Mater. Inter. 2010, 2, 3092–3099.

161

Mann, J. A.; Dichtel, W. R. Noncovalent functionalization of graphene by molecular and polymeric adsorbates. J. Phys. Chem. Lett. 2013, 4, 2649–2657.

162

Mann, J. A.; Rodriguez-Lopez, J.; Abruna, H. D.; Dichtel, W. R. Multivalent binding motifs for the noncovalent functionalization of graphene. J. Am. Chem. Soc. 2011, 133, 17614–17617.

163

Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.

164

Kozlov, S. M.; Vines, F.; Gorling, A. On the interaction of polycyclic aromatic compounds with graphene. Carbon 2012, 50, 2482–2492.

165

Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 2012, 6, 8857–8867.

166

Su, Q.; Pang, S. P.; Alijani, V.; Li, C.; Feng, X. L.; Mullen, K. Composites of graphene with large aromatic molecules. Adv. Mater. 2009, 21, 3191–3195.

167

Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 2011, 22, 405603.

168

Geng, J. X.; Jung, H. T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 2010, 114, 8227–8234.

169

Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-Tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(Ⅱ) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.

170

Xue, T.; Peng, B.; Xue, M.; Zhong, X.; Chiu, C. Y.; Yang, S.; Qu, Y. Q.; Ruan, L. Y.; Jiang, S.; Dubin, S. et al. Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. Nat. Commun. 2014, 5, 3200.

171

Qu, S. X.; Li, M. H.; Xie, L. X.; Huang, X.; Yang, J. G.; Wang, N.; Yang, S. F. Noncovalent functionalization of graphene attaching [6, 6]-Phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 2013, 7, 4070–4081.

172

Lee, D. W.; Kim, T.; Lee, M. An amphiphilic pyrene sheet for selective functionalization of graphene. Chem. Commun. 2011, 47, 8259–8261.

173

Zhang, M.; Parajuli, R. R.; Mastrogiovanni, D.; Dai, B.; Lo, P.; Cheung, W.; Brukh, R.; Chiu, P. L.; Zhou, T.; Liu, Z. F. et al. Production of graphene sheets by direct dispersion with aromatic healing agents. Small 2010, 6, 1100–1107.

174

Zheng, X. L.; Xu, Q.; Li, J. B.; Li, L. H.; Wei, J. Y. High-throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene-polymers. RSC Adv. 2012, 2, 10632–10638.

175

Lin, S. C.; Buehler, M. J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 2013, 5, 11801–11807.

176

Schlierf, A.; Yang, H. F.; Gebremedhn, E.; Treossi, E.; Ortolani, L.; Chen, L. P.; Minoia, A.; Morandi, V.; Samori, P.; Casiraghi, C. et al. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: Effect of charge, dipole and molecular structure. Nanoscale 2013, 5, 4205–4216.

177

Basiuk, E. V.; Martinez-Herrera, M.; Alvarez-Zauco, E.; Henao-Holguin, L. V.; Puente-Lee, I.; Basiuk, V. A. Noncovalent functionalization of graphene with a Ni(Ⅱ) tetraaza[14] annulene complex. Dalton Trans. 2014, 43, 7413–7428.

178

Bjork, J.; Hanke, F.; Palma, C. A.; Samori, P.; Cecchini, M.; Persson, M. Adsorption of aromatic and anti-aromatic systems on graphene through pi-pi stacking. J. Phys. Chem. Lett. 2010, 1, 3407–3412.

179

Rourke, J. P.; Pandey, P. A.; Moore, J. J.; Bates, M.; Kinloch, I. A.; Young, R. J.; Wilson, N. R. The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 2011, 50, 3173–3177.

180

Coluci, V. R.; Martinez, D. S. T.; Honorio, J. G.; de Faria, A. F.; Morales, D. A.; Skaf, M. S.; Alves, O. L.; Umbuzeiro, G. A. Noncovalent interaction with graphene oxide: The crucial role of oxidative debris. J. Phys. Chem. C 2014, 118, 2187–2193.

181

Liang, Y. Y.; Wu, D. Q.; Feng, X. L.; Mullen, K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 2009, 21, 1679–1683.

182

Pu, N. W.; Wang, C. A.; Liu, Y. M.; Sung, Y.; Wang, D. S.; Ger, M. D. Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J. Taiwan. Inst. Chem. E 2012, 43, 140–146.

183

Fernandez-Merino, M. J.; Paredes, J. I.; Villar-Rodil, S.; Guardia, L.; Solis-Fernandez, P.; Salinas-Torres, D.; Cazorla-Amoros, D.; Morallon, E.; Martinez-Alonso, A.; Tascon, J. M. D. Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 2012, 50, 3184–3194.

184

Khare, V.; Pham, M. Q.; Kumari, N.; Yoon, H. S.; Kim, C. S.; Park, J. I.; Ahn, S. H. Graphene-ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear. ACS Appl. Mater. Inter. 2013, 5, 4063–4075.

185

Ma, W. S.; Wu, L.; Yang, F.; Wang, S. F. Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J. Mater. Sci. 2014, 49, 562–571.

186

Yang, Y. K.; He, C. E.; Peng, R. G.; Baji, A.; Du, X. S.; Huang, Y. L.; Xie, X. L.; Mai, Y. W. Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J. Mater. Chem. 2012, 22, 5666–5675.

187

ul Hasan, K.; Sandberg, M. O.; Nur, O.; Willander, M. Polycation stabilization of graphene suspensions. Nanoscale. Res. Lett. 2011, 6, 493.

188

Lonkar, S. P.; Bobenrieth, A.; De Winter, J.; Gerbaux, P.; Raquez, J. M.; Dubois, P. A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. J. Mater. Chem. 2012, 22, 18124–18126.

189

Li, Y. P.; Han, G. Y. Ionic liquid-functionalized graphene for fabricating an amperometric acetylcholinesterase biosensor (Retraction of vol 137, pg 3160, 2012). Analyst 2013, 138, 7422.

190

Choi, E. Y.; Han, T. H.; Hong, J. H.; Kim, J. E.; Lee, S. H.; Kim, H. W.; Kim, S. O. Noncovalent functionalization of graphene with end-functional polymers. J. Mater. Chem. 2010, 20, 1907–1912.

191

Yang, Q.; Pan, X. J.; Huang, F.; Li, K. C. Fabrication of high-concentration and stable aqueous suspensions of graphene nanosheets by noncovalent functionalization with lignin and cellulose derivatives. J. Phys. Chem. C 2010, 114, 3811–3816.

192

Lee, D. Y.; Khatun, Z.; Lee, J. H.; Lee, Y. K.; In, I. Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules 2011, 12, 336–341.

193

Zhang, Y.; Zhang, J. Y.; Huang, X. L.; Zhou, X. J.; Wu, H. X.; Guo, S. W. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8, 154–159.

194

Zhang, J. L.; Zhang, F.; Yang, H. J.; Huang, X. L.; Liu, H.; Zhang, J. Y.; Guo, S. W. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085.

195

Zhang, F.; Zheng, B.; Zhang, J. L.; Huang, X. L.; Liu, H.; Guo, S. W.; Zhang, J. Y. Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J. Phys. Chem. C 2010, 114, 8469–8473.

196

Mann, J. A.; Alava, T.; Craighead, H. G.; Dichtel, W. R. Preservation of antibody selectivity on graphene by conjugation to a tripod monolayer. Angew. Chem. Int. Ed. 2013, 52, 3177–3180.

197

Alwarappan, S.; Boyapalle, S.; Kumar, A.; Li, C. Z.; Mohapatra, S. Comparative study of single-, few-, and multi layered graphene toward enzyme conjugation and electrochemical response. J. Phys. Chem. C 2012, 116, 6556–6559.

198

De, M.; Chou, S. S.; Dravid, V. P. Graphene oxide as an enzyme inhibitor: Modulation of activity of alpha-chymotrypsin. J. Am. Chem. Soc. 2011, 133, 17524–17527.

199

Kodali, V. K.; Scrimgeour, J.; Kim, S.; Hankinson, J. H.; Carroll, K. M.; de Heer, W. A.; Berger, C.; Curtis, J. E. Nonperturbative Chemical Modification of Graphene for Protein Micropatterning. Langmuir 2011, 27, 863–865.

200

Liu, K. H.; Chen, S. L.; Luo, Y. F.; Jia, D. M.; Gao, H.; Hu, G. J.; Liu, L. Noncovalently functionalized pristine graphene/metal nanoparticle hybrid for conductive composites. Compos. Sci. Technol. 2014, 94, 1–7.

201

Lu, G. H.; Mao, S.; Park, S.; Ruoff, R. S.; Chen, J. H. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res. 2009, 2, 192–200.

202

Zhu, G. X.; Liu, Y. J.; Xu, Z.; Jiang, T. A.; Zhang, C.; Li, X.; Qi, G. Flexible magnetic nanoparticles-reduced graphene oxide composite membranes formed by self-Assembly in solution. ChemPhysChem 2010, 11, 2432–2437.

203

Ma, X.; Qu, Q. Y.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K. W.; Zhao, Y. L. Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J. Mater. Chem. B 2013, 1, 6495–6500.

204

Fullerton, R. J.; Cole, D. P.; Behler, K. D.; Das, S.; Irin, F.; Parviz, D.; Hoque, M. N. F.; Fan, Z. Y.; Green, M. J. Graphene non-covalently tethered with magnetic nanoparticles. Carbon 2014, 72, 192–199.

205

Lu, W. B.; Ning, R.; Qin, X. Y.; Zhang, Y. W.; Chang, G. H.; Liu, S.; Luo, Y. L.; Sun, X. P. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J. Hazard. Mater. 2011, 197, 320–326.

206

Dutta, S.; Ray, C.; Sarkar, S.; Pradhan, M.; Negishi, Y.; Pal, T. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Inter. 2013, 5, 8724–8732.

207

Chen, X. J.; Yasin, F. M.; Eggers, P. K.; Boulos, R. A.; Duan, X. F.; Lamb, R. N.; Iyer, K. S.; Raston, C. L. Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Adv. 2013, 3, 3213–3217.

Nano Research
Pages 1039-1074
Cite this article:
Lonkar SP, Deshmukh YS, Abdala AA. Recent advances in chemical modifications of graphene. Nano Research, 2015, 8(4): 1039-1074. https://doi.org/10.1007/s12274-014-0622-9

840

Views

217

Crossref

N/A

Web of Science

217

Scopus

21

CSCD

Altmetrics

Received: 13 July 2014
Revised: 03 October 2014
Accepted: 25 October 2014
Published: 28 November 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return