AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Triboelectrification induced UV emission from plasmon discharge

Chang Bao Han1,§Chi Zhang1,§Jingjing Tian1Xiaohui Li1Limin Zhang1Zhou Li1Zhong Lin Wang1,2( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Material Science and EngineeringGeorgia Institute of Technology, AtlantaGeorgia30332USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

UV is a high-energy electromagnetic radiation that has been widely used in industrial production and the scientific research domain. In this work, a deep UV light emission was obtained using triboelectrification induced plasma discharge without any extra power supply. By a mechanical friction between polymer and quartz glass, the triboelectric charges cause a changing electric field, which may bring plasma discharge of low pressure gas (Ar-Hg) and give out 253.7 nm irradiation. The UV light caused by continuous friction can excite a trichromatic phosphor and afford a bright white light emission. A UV sterilization experiment shows that ~98% of Escherichia coli can be killed in 30 min by UV irradiation, which reveals that a self-powered sterilization apparatus with good sterilization effect was fabricated. This work provides a novel design to fabricate a self-powered UV light emitting device using low-frequency mechanical friction and realizes the coupling of triboelectrification and plasma luminescence, which may further expand the application of UV light in special circumstances.

Electronic Supplementary Material

Download File(s)
12274_2014_634_MOESM1_ESM.pdf (714.4 KB)

References

1

Suh, H.; Lee, W. K.; Park, J. C.; Cho, B. K. Evaluation of the degree of cross-linking in UV irradiated porcine valves. Yonsei Med. J. 1999, 40, 159-165.

2

Wolnicka-Glubisz, A.; Damsker, J.; Constant, S.; Corn, S.; De Fabo, E.; Noonan, F. Deficient inflammatory response to UV radiation in neonatal mice. J. Leukoc. Biol. 2007, 81, 1352-1361.

3

Helmy, S. A.; El-Bedaiwy, H. M. Simultaneous determination of paracetamol and methocarbamol in human plasma by HPLC using UV detection with time programming: Application to pharmacokinetic study. Drug Res. 2014, 64, 363-367.

4

Furmaniak, P.; Kubalczyk, P.; Glowacki, R. Determination of homocysteine thiolactone in urine by field amplified sample injection and sweeping MEKC method with UV detection. J. Chromatogr. B 2014, 961, 36-41.

5

Roelkens, G.; Dumon, P.; Bogaerts, W.; Van Thourhout, D.; Baets, R. Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography. IEEE Photonics Technol. Lett. 2005, 17, 2613-2615.

6

Jung, G. Y.; Ganapathiappan, S.; Ohlberg, D. A. A.; Olynick, D. L.; Chen, Y.; Tong, W. M.; Williams, R. S. Fabrication of a 34×34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography. Nano Lett. 2004, 4, 1225-1229.

7

Lin, B. J. Deep UV lithography. J. Vac. Sci. Technol. 1975, 12, 1317-1320.

8

Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325-328.

9

Hirayama, H.; Yatabe, T.; Noguchi, N.; Kamata, N. Development of 230-270 nm AlGaN-based deep-UV leds. Electr. Commun. Jpn. 2010, 93, 24-33.

10

Johnstone, R. W.; Foulds, I. G.; Parameswaran, M. Deep-UV exposure of poly(methyl methacrylate) at 254 nm using low-pressure mercury vapor lamps. J. Vac. Sci. Technol. B 2008, 26, 682-685.

11

Beneking, C.; Anderer, P. Radiation efficiency of Hg-Ar surface-wave discharges. J. Phys. D: Appl. Phys. 1992, 25, 1470-1482.

12

Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature 2008, 455, 1089-1092.

13

Kneip, S. Applied physics: A stroke of X-ray. Nature 2011, 473, 455-456.

14

Collins, A. L.; Camara, C. G.; Naranjo, B. B.; Putterman, S. J.; Hird, J. R. Charge localization on a polymer surface measured by triboelectrically induced X-ray emission. Phys. Rev. B 2013, 88, 064202.

15

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109-3114.

16

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.

17

Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59-65.

18

Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 1992, 256, 362-364.

19

Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788-3796.

20

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580-3591.

21

Zhang, C.; Tang, W.; Zhang, L. M.; Han, C. B.; Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 2014, 8, 8702-8709.

22

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818-2824.

23

Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1-46.

24

Fang, D. Y.; Huang, C. H. Modelling of low-pressure Ar+Hg discharge with high electric current densities. J. Phys. D: Appl. Phys. 1988, 21, 1490-1495.

25

Xu, X. J.; Jie, Y. X. Kinetics of Ar-Hg plasma in dielectric barrier discharge. Phys. Scr. 1995, 52, 603-606.

26

Eliasson, B.; Gellert, B. Investigation of resonance and excimer radiation from a dielectric barrier discharge in mixtures of mercury and the rare gases. J. Appl. Phys. 1990, 68, 2026-2037.

27

Jackson, J. D. Classical Electrodynamics, 3rd ed.; Wiley: New York, 1998.

28

Kim, J.; Jeong, J.; Jin, D.; Kim, H.; Han, S.; Kwon, G.; Choi, E.; Cho, G. Longitudinal and transverse discharges with mercury-rare and xenon gases. J. Phys. D: Appl. Phys. 2011, 44, 075202.

29

Francke, K. P.; Rudolph, R.; Miessner, H. Design and operating characteristics of a simple and reliable DBD reactor for use with atmospheric air. Plasma Chem. Plasma Process. 2003, 23, 47-57.

30

Loo, K. H.; Moss, G. J.; Tozer, R. C.; Stone, D. A.; Jinno, M.; Devonshire, R. A dynamic collisional-radiative model of a low-pressure mercury-argon discharge lamp: A physical approach to modeling fluorescent lamps for circuit simulations. IEEE Trans. Power Electron. 2004, 19, 1117-1129.

31

Heise, M.; Neff, W.; Franken, O.; Muranyi, P.; Wunderlich, J. Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure. Plasma Polym. 2004, 9, 23-33.

32

Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L. Plasma medicine: An introductory review. New J. Phys. 2009, 11, 115012.

33

Delgado, A. A.; Schaaf, N. G. Dynamic ultraviolet sterilization of different implant types. Int. J. Oral Maxillofac. Implants 1990, 5, 117-125.

34

Hidaka, Y.; Kubota, K. Study on the sterilization of grain surface using UV radiation-Development and evaluation of UV irradiation equipment. Jarq-Jap. Agric. Res. Q. 2006, 40, 157-161.

35

Norman, A. The nuclear role in the ultraviolet inactivation of neurospora conidia. J. Cell. Comp. Physiol. 1954, 44, 1-10.

36

Chadwick, C. A.; Potten, C. S.; Nikaido, O.; Matsunaga, T.; Proby, C.; Young, A. R. The detection of cyclobutane thymine dimers, (6-4) photolesions and the Dewar photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects. J. Photochem. Photobiol. B: Biol. 1995, 28, 163-170.

Nano Research
Pages 219-226
Cite this article:
Han CB, Zhang C, Tian J, et al. Triboelectrification induced UV emission from plasmon discharge. Nano Research, 2015, 8(1): 219-226. https://doi.org/10.1007/s12274-014-0634-5
Part of a topical collection:

519

Views

34

Crossref

N/A

Web of Science

31

Scopus

5

CSCD

Altmetrics

Received: 20 September 2014
Revised: 01 November 2014
Accepted: 03 November 2014
Published: 03 December 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return