Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
UV is a high-energy electromagnetic radiation that has been widely used in industrial production and the scientific research domain. In this work, a deep UV light emission was obtained using triboelectrification induced plasma discharge without any extra power supply. By a mechanical friction between polymer and quartz glass, the triboelectric charges cause a changing electric field, which may bring plasma discharge of low pressure gas (Ar-Hg) and give out 253.7 nm irradiation. The UV light caused by continuous friction can excite a trichromatic phosphor and afford a bright white light emission. A UV sterilization experiment shows that ~98% of Escherichia coli can be killed in 30 min by UV irradiation, which reveals that a self-powered sterilization apparatus with good sterilization effect was fabricated. This work provides a novel design to fabricate a self-powered UV light emitting device using low-frequency mechanical friction and realizes the coupling of triboelectrification and plasma luminescence, which may further expand the application of UV light in special circumstances.
Suh, H.; Lee, W. K.; Park, J. C.; Cho, B. K. Evaluation of the degree of cross-linking in UV irradiated porcine valves. Yonsei Med. J. 1999, 40, 159-165.
Wolnicka-Glubisz, A.; Damsker, J.; Constant, S.; Corn, S.; De Fabo, E.; Noonan, F. Deficient inflammatory response to UV radiation in neonatal mice. J. Leukoc. Biol. 2007, 81, 1352-1361.
Helmy, S. A.; El-Bedaiwy, H. M. Simultaneous determination of paracetamol and methocarbamol in human plasma by HPLC using UV detection with time programming: Application to pharmacokinetic study. Drug Res. 2014, 64, 363-367.
Furmaniak, P.; Kubalczyk, P.; Glowacki, R. Determination of homocysteine thiolactone in urine by field amplified sample injection and sweeping MEKC method with UV detection. J. Chromatogr. B 2014, 961, 36-41.
Roelkens, G.; Dumon, P.; Bogaerts, W.; Van Thourhout, D.; Baets, R. Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography. IEEE Photonics Technol. Lett. 2005, 17, 2613-2615.
Jung, G. Y.; Ganapathiappan, S.; Ohlberg, D. A. A.; Olynick, D. L.; Chen, Y.; Tong, W. M.; Williams, R. S. Fabrication of a 34×34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography. Nano Lett. 2004, 4, 1225-1229.
Lin, B. J. Deep UV lithography. J. Vac. Sci. Technol. 1975, 12, 1317-1320.
Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325-328.
Hirayama, H.; Yatabe, T.; Noguchi, N.; Kamata, N. Development of 230-270 nm AlGaN-based deep-UV leds. Electr. Commun. Jpn. 2010, 93, 24-33.
Johnstone, R. W.; Foulds, I. G.; Parameswaran, M. Deep-UV exposure of poly(methyl methacrylate) at 254 nm using low-pressure mercury vapor lamps. J. Vac. Sci. Technol. B 2008, 26, 682-685.
Beneking, C.; Anderer, P. Radiation efficiency of Hg-Ar surface-wave discharges. J. Phys. D: Appl. Phys. 1992, 25, 1470-1482.
Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature 2008, 455, 1089-1092.
Kneip, S. Applied physics: A stroke of X-ray. Nature 2011, 473, 455-456.
Collins, A. L.; Camara, C. G.; Naranjo, B. B.; Putterman, S. J.; Hird, J. R. Charge localization on a polymer surface measured by triboelectrically induced X-ray emission. Phys. Rev. B 2013, 88, 064202.
Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109-3114.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.
Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes. Nano Energy 2014, 6, 59-65.
Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 1992, 256, 362-364.
Zhu, G.; Zhou, Y. S.; Bai, P.; Meng, X. S.; Jing, Q. S.; Chen, J.; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788-3796.
Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580-3591.
Zhang, C.; Tang, W.; Zhang, L. M.; Han, C. B.; Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 2014, 8, 8702-8709.
Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818-2824.
Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1-46.
Fang, D. Y.; Huang, C. H. Modelling of low-pressure Ar+Hg discharge with high electric current densities. J. Phys. D: Appl. Phys. 1988, 21, 1490-1495.
Xu, X. J.; Jie, Y. X. Kinetics of Ar-Hg plasma in dielectric barrier discharge. Phys. Scr. 1995, 52, 603-606.
Eliasson, B.; Gellert, B. Investigation of resonance and excimer radiation from a dielectric barrier discharge in mixtures of mercury and the rare gases. J. Appl. Phys. 1990, 68, 2026-2037.
Jackson, J. D. Classical Electrodynamics, 3rd ed.; Wiley: New York, 1998.
Kim, J.; Jeong, J.; Jin, D.; Kim, H.; Han, S.; Kwon, G.; Choi, E.; Cho, G. Longitudinal and transverse discharges with mercury-rare and xenon gases. J. Phys. D: Appl. Phys. 2011, 44, 075202.
Francke, K. P.; Rudolph, R.; Miessner, H. Design and operating characteristics of a simple and reliable DBD reactor for use with atmospheric air. Plasma Chem. Plasma Process. 2003, 23, 47-57.
Loo, K. H.; Moss, G. J.; Tozer, R. C.; Stone, D. A.; Jinno, M.; Devonshire, R. A dynamic collisional-radiative model of a low-pressure mercury-argon discharge lamp: A physical approach to modeling fluorescent lamps for circuit simulations. IEEE Trans. Power Electron. 2004, 19, 1117-1129.
Heise, M.; Neff, W.; Franken, O.; Muranyi, P.; Wunderlich, J. Sterilization of polymer foils with dielectric barrier discharges at atmospheric pressure. Plasma Polym. 2004, 9, 23-33.
Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L. Plasma medicine: An introductory review. New J. Phys. 2009, 11, 115012.
Delgado, A. A.; Schaaf, N. G. Dynamic ultraviolet sterilization of different implant types. Int. J. Oral Maxillofac. Implants 1990, 5, 117-125.
Hidaka, Y.; Kubota, K. Study on the sterilization of grain surface using UV radiation-Development and evaluation of UV irradiation equipment. Jarq-Jap. Agric. Res. Q. 2006, 40, 157-161.
Norman, A. The nuclear role in the ultraviolet inactivation of neurospora conidia. J. Cell. Comp. Physiol. 1954, 44, 1-10.
Chadwick, C. A.; Potten, C. S.; Nikaido, O.; Matsunaga, T.; Proby, C.; Young, A. R. The detection of cyclobutane thymine dimers, (6-4) photolesions and the Dewar photoisomers in sections of UV-irradiated human skin using specific antibodies, and the demonstration of depth penetration effects. J. Photochem. Photobiol. B: Biol. 1995, 28, 163-170.