Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The controlled synthesis of gold nanocrystals has been the subject of intensive studies for decades because the properties and functions of gold nanomaterials are highly dependent on their particle size, shape, and dimensionality. Especially, anisotropic gold nanocrystals, such as nanowires, nanobelts, nanoplates and nanosheets, have attracted much attention due to their striking properties and promising applications in electronics, catalysis, photonics, sensing and biomedicine. In this review, we will summarize the recent developments of onedimensional (1D) and two-dimensional (2D) gold nanostructures. Various kinds of synthetic methods for preparation of these 1D and 2D gold nanocrystals will be described. Moreover, we will also briefly introduce the properties and potential applications of these 1D and 2D gold nanocrystals.
Faraday, M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. London, Ser. A 1857, 147, 145-181.
Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209-217.
Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 2014, 53, 1756-1789.
Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60-103.
Brioude, A.; Jiang, X. C.; Pileni, M. P. Optical properties of gold nanorods: DDA simulations supported by experiments. J. Phys. Chem. B 2005, 109, 13138-13142.
Hao, E.; Schatz, G. C.; Hupp, J. T. Synthesis and optical properties of anisotropic metal nanoparticles. J. Fluoresc. 2004, 14, 331-341.
Hong, X.; Wang, D. S.; Li, Y. D. Kinked gold nanowires and their SPR/SERS properties. Chem. Commun. 2011, 47, 9909-9911.
Feng, H. J.; Yang, Y. M.; You, Y. M.; Li, G. P.; Guo, J.; Yu, T.; Shen, Z. X.; Wu, T.; Xing, B. G. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem. Commun. 2009, 1984-1986.
Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310-325.
Andoy, N. M.; Zhou, X. C.; Choudhary, E.; Shen, H.; Liu, G. K.; Chen, P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 2013, 135, 1845-1852.
Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.
Kondo, Y.; Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 2000, 289, 606-608.
Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250-1261.
Sau, T. K.; Rogach, A. L.; Jäckel, F.; Klar, T. A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010, 22, 1805-1825.
Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783-1791.
Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544-7554.
Forrer, P.; Schlottig, F.; Siegenthaler, H.; Textor, M. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. J. Appl. Electrochem. 2000, 30, 533-541.
Halder, A.; Ravishankar, N. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854-1858.
Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900-8901.
Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902-8903.
Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041-2044.
Pazos-Pérez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzán, L. M.; Giersig, M. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008, 24, 9855-9860.
Huang, X.; Li, S. Z.; Wu, S. X.; Huang, Y. Z.; Boey, F.; Gan, C. L.; Zhang, H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv. Mater. 2012, 24, 979-983.
Bernardi, M.; Raja, S. N.; Lim, S. K. Nanotwinned gold nanowires obtained by chemical synthesis. Nanotechnology 2010, 21, 285607.
Krichevski, O.; Tirosh, E.; Markovich, G. Formation of gold-silver nanowires in thin surfactant solution films. Langmuir 2006, 22, 867-870.
Shen, X. S.; Chen, L. Y.; Li, D. H.; Zhu, L. F.; Wang, H.; Liu, C. C.; Wang, Y.; Xiong, Q. H.; Chen, H. Y. Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 2011, 5, 8426-8433.
Imura, Y.; Tanuma, H.; Sugimoto, H.; Ito, R.; Hojo, S.; Endo, H.; Morita, C.; Kawai, T. Water-dispersible ultrathin Au nanowires prepared using a lamellar template of a long-chain amidoamine derivative. Chem. Commun. 2011, 47, 6380-6382.
Zhu, C.; Peng, H. C.; Zeng, J.; Liu, J. Y.; Gu, Z. Z.; Xia, Y. N. Facile Synthesis of gold wavy nanowires and investigation of their growth mechanism. J. Am. Chem. Soc. 2012, 134, 20234-20237.
He, J. T.; Wang, Y. W.; Feng, Y. H.; Qi, X. Y.; Zeng, Z. Y.; Liu, Q.; Teo, W. S.; Gan, C. L.; Zhang, H.; Chen, H. Y. Forest of gold nanowires: A new type of nanocrystal growth. ACS Nano 2013, 7, 2733-2740.
Liu, H.; Cao, X. M.; Yang, J. M.; Gong, X. Q.; Shi, X. Y. Dendrimer-mediated hydrothermal synthesis of ultrathin gold nanowires. Sci. Rep. 2013, 3, 3181.
Wang, C.; Wei, Y. J.; Jiang, H. Y.; Sun, S. H. Bending nanowire growth in solution by mechanical disturbance. Nano Lett. 2010, 10, 2121-2125.
Shen, X. S.; Wang, G. Z.; Hong, X.; Xie, X.; Zhu, W.; Li, D. P. Anisotropic growth of one-dimensional silver rod-needle and plate-belt heteronanostructures induced by twins and hcp phase. J. Am. Chem. Soc. 2009, 131, 10812-10813.
Liang, H. Y.; Yang, H. X.; Wang, W. Z.; Li, J. Q.; Xu, H. X. High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals. J. Am. Chem. Soc. 2009, 131, 6068-6069.
Wang, P. P.; Yu, Q. Y.; Long, Y.; Hu, S.; Zhuang, J.; Wang, X. Multivalent assembly of ultrasmall nanoparticles: One-, two-, and three-dimensional architectures of 2 nm gold nanoparticles. Nano Res. 2012, 5, 283-291.
Swami, A.; Kumar, A.; Selvakannan, P. R.; Mandal, S.; Pasricha, R.; Sastry, M. Highly oriented gold nanoribbons by the reduction of aqueous chloroaurate ions by hexadecylaniline Langmuir monolayers. Chem. Mater. 2003, 15, 17-19.
Zhang, J. L.; Du, J. M.; Han, B. X.; Liu, Z. M.; Jiang, T.; Zhang, Z. F. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 2006, 45, 1116-1119.
Bakshi, M. S.; Possmayer, F.; Petersen, N. O. Aqueous-phase room-temperature synthesis of gold nanoribbons: Soft template effect of a gemini surfactant. J. Phys. Chem. C 2008, 112, 8259-8265.
Zhao, N.; Wei, Y.; Sun, N. J.; Chen, Q. J.; Bai, J. W.; Zhou, L. P.; Qin, Y.; Li, M. X.; Qi, L. M. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 2008, 24, 991-998.
Li, L. S.; Wang, Z. J.; Huang, T.; Xie, J. L.; Qi, L. M. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir 2010, 26, 12330-12335.
Zhang, J. H.; Liu, H. Y.; Wang, Z. L.; Ming, N. B. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Appl. Phys. Lett. 2007, 91, 133112.
Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Synthetic routes and plasmonic properties of noble metal nanoplates. Eur. J. Inorg. Chem. 2010, 2010, 4288-4297.
Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482-488.
Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L. D.; Schatz, G. C.; Mirkin, C. A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312-5313.
Sun, X. P.; Dong, S. J.; Wang, E. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 2004, 43, 6360-6363.
Huang, W. L.; Chen, C. H.; Huang, M. H. Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 2007, 111, 2533-2538.
Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005-2016.
Lofton, C.; Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197-1208.
Lim, B.; Camargo, P. H. C.; Xia, Y. N. Mechanistic study of the synthesis of an nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir 2008, 24, 10437-10442.
Hong, S.; Shuford, K. L.; Park, S. Shape transformation of gold nanoplates and their surface plasmon characterization: Triangular to hexagonal nanoplates. Chem. Mater. 2011, 23, 2011-2013.
Porel, S.; Singh, S.; Radhakrishnan, T. P. Polygonal gold nanoplates in a polymer matrix. Chem. Commun. 2005, 2387-2389.
Qin, H. L.; Wang, D.; Huang, Z. L.; Wu, D. M.; Zeng, Z. C.; Ren, B.; Xu, K.; Jin, J. Thickness-controlled synthesis of ultrathin Au sheets and surface plasmonic property. J. Am. Chem. Soc. 2013, 135, 12544-12547.
Huang, X.; Li, H.; Li, S. Z.; Wu, S. X.; Boey, F.; Ma, J.; Zhang, H. Synthesis of gold square-like plates from ultrathin gold square sheets: The evolution of structure phase and shape. Angew. Chem. Int. Ed. 2011, 50, 12245-12248.
Wu, Z. N.; Dong, C. W.; Li, Y. C.; Hao, H. X.; Zhang, H.; Lu, Z. Y.; Yang, B. Self-assembly of Au15 into single-cluster-thick sheets at the interface of two miscible high-boiling solvents. Angew. Chem. Int. Ed. 2013, 52, 9952-9955.
Wang, C.; Sun, S. H. Facile synthesis of ultrathin and single-crystalline Au nanowires. Chem. Asian J. 2009, 4, 1028-1034.
Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 2002, 18, 922-927.
Moon, G. D.; Lim, G. H.; Song, J. H.; Shin, M.; Yu, T.; Lim, B.; Jeong, U. Highly stretchable patterned gold electrodes made of Au nanosheets. Adv. Mater. 2013, 25, 2707-2712.
Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B. R.; Mbindyo, J.; Mallouk, T. E. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 2000, 77, 1399-1401.
Loubat, A.; Escoffier, W.; Lacroix, L. M.; Viau, G.; Tan, R.; Carrey, J.; Warot-Fonrose, B.; Raquet, B. Cotunneling transport in ultra-narrow gold nanowire bundles. Nano Res. 2013, 6, 644-651.
Wu, B.; Heidelberg, A.; Boland, J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 2005, 4, 525-529.
Lee, S.; Im, J.; Yoo, Y.; Bitzek, E.; Kiener, D.; Richter, G.; Kim, B.; Oh, S. H. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat. Commun. 2014, 5, 3033.
Wang, J. W.; Sansoz, F.; Huang, J. Y.; Liu, Y.; Sun, S. H.; Zhang, Z.; Mao, S. X. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 2013, 4, 1742.
Xia, Y.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338-344.
Bridges, C. R.; DiCarmine, P. M.; Seferos, D. S. Gold nanotubes as sensitive, solution-suspendable refractive index reporters. Chem. Mater. 2012, 24, 963-965.
Anderson, L. J. E.; Payne, C. M.; Zhen, Y. R.; Nordlander, P.; Hafner, J. H. A tunable plasmon resonance in gold nanobelts. Nano Lett. 2011, 11, 5034-5037.
Khlebtsov, B. N.; Khlebtsov, N. G. Multipole plasmons in metal nanorods: Scaling properties and dependence on particle size, shape, orientation, and dielectric environment. J. Phys. Chem. C 2007, 111, 11516-11527.
Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229-232.
Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547-1562.
Wei, H.; Xu, H. X. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics 2012, 1, 155-169.
Grirrane, A.; Corma, A.; García, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661-1664.
Corma, A.; Concepcion, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; Lopez-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775-781.
Chen, M. S.; Goodman, D. W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739-746.
Hong, X.; Wang, D. S.; Cai, S. F.; Rong, H. P.; Li, Y. D. Single-crystalline octahedral Au-Ag nanoframes. J. Am. Chem. Soc. 2012, 134, 18165-18168.
Wu, Y. E.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975-8981.
Zhou, X. C.; Andoy, N. M.; Liu, G. K.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237-241.
Hong, X.; Wang, D. S.; Yu, R.; Yan, H.; Sun, Y.; He, L.; Niu, Z. Q.; Peng, Q.; Li, Y. D. Ultrathin Au-Ag bimetallic nanowires with Coulomb blockade effects. Chem. Commun. 2011, 47, 5160-5162.
Guo, T.; Tan, Y. W. Formation of one-dimensional Ag-Au solid solution colloids with Au nanorods as seeds, their alloying mechanisms, and surface plasmon resonances. Nanoscale 2013, 5, 561-569.
Wang, Y.; Wang, Q. X.; Sun, H.; Zhang, W. Q.; Chen, G.; Wang, Y. W.; Shen, X. S.; Han, Y.; Lu, X. M.; Chen, H. Y. Chiral transformation: From single nanowire to double helix. J. Am. Chem. Soc. 2011, 133, 20060-20063.
Velázquez-Salazar, J. J.; Esparza, R.; Mejía-Rosales, S. J.; Estrada-Salas, R.; Ponce, A.; Deepak, F. L.; Castro-Guerrero, C.; José-Yacamán, M. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS Nano 2011, 5, 6272-6278.
Lee, H.; Yoo, Y.; Kang, T.; In, J.; Seo, M. K.; Kim, B. Topotaxial fabrication of vertical AuxAg1-x nanowire arrays: Plasmon-active in the blue region and corrosion resistant. Small 2012, 8, 1527-1533.
Hong, X.; Yin, Z. Y.; Fan, Z. X.; Tay, Y. Y.; Chen, J. Z.; Du, Y. P.; Xue, C.; Chen, H. Y.; Zhang, H. Periodic AuAg-Ag2S heterostructured nanowires. Small 2014, 10, 479-482.
Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. Acc. Chem. Res. 2012, 45, 1887-1895.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K.; Zhang, H. The chemistry of ultra-thin transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093-11097.
Li, H.; Wu, J. M. T.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single- and multi-layer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067-1075.
Tan, C. L.; Qi, X. Y.; Huang, X.; Yang, J.; Zheng, B.; An, Z. F.; Chen, R. F.; Wei, J.; Tang, B. Z.; Huang, W. et al. Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Adv. Mater. 2014, 26, 1735-1739.
Qi, X. Y.; Tan, C. L.; Wei, J.; Zhang, H. Synthesis of graphene/conjugated polymer nanocomposites for electronic device applications. Nanoscale 2013, 5, 1440-1451.
Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979-6004.
Wu, S. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 9, 1160-1172.
Huang, X.; Qi, X. Y.; Boey, F.; Zhang. H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.
Tan, C. L.; Huang, X.; Zhang, H. Synthesis and applications of graphene-based noble metal nanostructures. Mater. Today 2013, 16, 29-36.
Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.
Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4, 1227-1232.
Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185-2204.
Zeng, Z. Y.; Tan, C. L.; Huang, X.; Bao, S. Y.; Zhang, H. Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energ. Environ. Sci. 2014, 7, 797-803.
Hong, X.; Liu, J. Q.; Zheng, B.; Huang, X.; Zhang, X.; Tan, C. L.; Chen, J. Z.; Fan, Z. X.; Zhang, H. A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 2014, 26, 6250-6254.