Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hexagonal boron nitride (h-BN) is often prepared by epitaxial growth on metals, and stability of the formed BN/metal interfaces in gaseous environment is a key issue for physicochemical properties of the BN overlayers. As an illustration here, the structural change of a BN/Ru(0001) interface upon exposure to O2 has been investigated using in situ photoemission electron microscopy (PEEM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). We demonstrate the occurrence of oxygen intercalation of the BN overlayers in O2 atmosphere, which decouples the BN overlayer from the substrate. Comparative studies of oxygen intercalation at BN/Ru(0001) and graphene/Ru(0001) surfaces indicate that the oxygen intercalation of BN overlayers happens more easily than graphene. This finding will be of importance for future applications of BN-based devices and materials under ambient conditions.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453.
Gibb, A. L.; Alem, N.; Chen, J. H.; Erickson, K. J.; Ciston, J.; Gautam, A.; Linck, M.; Zettl, A. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 2013, 135, 6758-6761.
Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217-220.
Müller, F.; Hüfner, S.; Sachdev, H. Epitaxial growth of boron nitride on a Rh(111) multilayer system: Formation and fine tuning of a BN-nanomesh. Surf. Sci. 2009, 603, 425-432.
Goriachko, A.; He, Y.; Knapp, M.; Over, H. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 2007, 23, 2928-2931.
Müller, F.; Stöwe, K.; Sachdev, H. Symmetry versus commensurability: Epitaxial growth of hexagonal boron nitride on Pt(111) from B-Trichloroborazine (ClBNH)3. Chem. Mater. 2005, 17, 3464-3467.
Lee, K. H.; Shin, H. J.; Lee, J.; Lee, I.; Kim, G. H.; Choi, J.Y.; Kim, S. Y. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714-718.
Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H.; Juang, Z. Y.; Dresselhaus, M. S.; Li, L. J.; Kong, J. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134-4139.
Wang, M.; Kim, M.; Odkhuu, D.; Park, N.; Lee, J.; Jang, W. J.; Kahng, S. J.; Ruoff, R. S.; Song, Y. J.; Lee, S. Catalytic transparency of hexagonal boron nitride on copper for chemical vapor deposition growth of large-area and high-quality graphene. ACS Nano 2014, 6, 5478-5483.
Lyalin, A.; Nakayama, A.; Uosaki, K.; Taketsugu, T. Functionalization of monolayer h-BN by a metal support for the oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 21359-21370.
Uosaki, K.; Elumalai, G.; Noguchi, H.; Masuda, T.; Lyalin, A.; Nakayama, A.; Taketsugu, T. Boron nitride nanosheet on gold as an electrocatalyst for oxygen reduction reaction: Theoretical suggestion and experimental proof. J. Am. Chem. Soc. 2014, 136, 6542-6545.
Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem. Int. Ed. 2010, 49, 6120-6124.
Goriachko, A.; He, Y. B.; Over, H. Complex growth of nano Au on BN nanomeshes supported by Ru (0001). J. Phys. Chem. C 2008, 112, 8147-8152.
Zhang, Y.; Zhang, Y. F.; Ma, D. L.; Ji, Q. Q.; Fang, W.; Shi, J. P.; Gao, T.; Liu, M. X.; Gao, Y. B.; Chen, Y. B.; Xu, L. M.; Liu, Z. F. Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res. 2013, 6, 887-896.
Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasi freestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.
Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.
Mao, J.; Huang, L.; Pan, Y.; Gao, M.; He, J.; Zhou, H.; Guo, H.; Tian, Y.; Zou, Q.; Zhang, L.; et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru (0001). Appl. Phys. Lett. 2012, 100, 093101.
Sicot, M.; Leicht, P.; Zusan, A.; Bouvron, S.; Zander, O.; Weser, M.; Dedkov, Y. S.; Horn, K.; Fonin, M. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111). ACS Nano 2012, 6, 151-158.
Cui, Y.; Gao, J.; Jin, L.; Zhao, J.; Tan, D.; Fu, Q.; Bao, X. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352-360.
Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 2012, 51, 4856-4859.
Ma, D. L.; Zhang, Y. F.; Liu, M. X.; Ji, Q. Q.; Gao, T.; Zhang, Y.; Liu, Z. F. Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Res. 2013, 6, 671-678.
Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296-8301.
Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover-Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175-8179
Feng, X.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662-5668.
Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P.; Liu, L.; Bluhm, H.; Liu, Z.; Zhang, S. B.; Bao, X. H. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 17023-17028
Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655-16660.
Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406-411.
Goriachko, A.; He, Y. B.; Knapp, M.; Over, H. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir 2007, 23, 2928-2931.
Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 9, 7303-7309.
Preobrajenski, A. B.; Nesterov, M. A.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 2007, 446, 119-123.
Ling, W. L.; Bartelt, N. C.; Pohl, K.; Figuera, J.; Hwang, R. Q.; McCarty, K. F. Enhanced self-diffusion on Cu(111) by trace amounts of S: Chemical-reaction-limited kinetics. Phys. Rev. Lett. 2004, 93, 166101.
Jin, L.; Fu, Q.; Yang, Y.; Bao, X. A comparative study of intercalation mechanism at graphene/Ru (0001) interface. Surf. Sci. 2013, 617, 81-86.
Lindroos, M.; Pfnür, H.; Held, G.; Menzel, D. Adsorbate induced reconstruction by strong chemisorption: Ru(001) p(2×2)-O. Surf. Sci. 1989, 222, 451.
Murata, Y.; Starodub, E.; Kappes, B. B.; Ciobanu, C. V.; Bartelt, N. C.; McCarty, K. F.; Kodambaka, S. Orientation-dependent work function of graphene on Pd (111). Appl. Phys. Lett. 2010, 97, 143114.
Ünal, B.; Sato, Y.; McCarty, K. F.; Bartelt, N. C.; Duden, T.; Jenks, C. J.; Schmid, A. K.; Thiel, P. A. Work function of a quasicrystal surface: Icosahedral Al-Pd-Mn. J. Vac. Sci. Technol. A 2009, 27, 1249.
Nie, S.; Walter, A. L.; Bartelt, N. C.; Starodub, E.; Bostwick, A.; Rotenberg, E.; McCarty, K. F. Growth from below: Graphene bilayers on Ir (111). ACS Nano 2011, 5, 2298-2306.
Ohta, T.; Gabaly, F. E.; Bostwick, A.; McChesney, J. L.; Emtsev, K.V.; Schmid, A. K.; Seyller, T.; Horn, K.; Rotenberg, E. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 2008, 10, 023034.
Orofeo, C. M.; Suzuki, S.; Kageshima, H.; Hibino, H. Growth and low-energy electron microscopy characterization of monolayer hexagonal boron nitride on epitaxial cobalt. Nano Res. 2013, 5, 335-347.
Orlando, F.; Larciprete, R.; Lacovig, P.; Boscarato, I.; Baraldi, A.; Lizzit, S. Epitaxial growth of hexagonal boron nitride on Ir(111). J. Phys. Chem. C 2012, 116, 157-164.
Lizzit, S.; Baraldi, A.; Groso, A.; Reuter, K.; Ganduglia-Pirovano, M. V.; Stampfl, C.; Scheffler, M.; Stichler, M.; Keller, C.; Wurth, W.; Menzel, D. Surface core-level shifts of clean and oxygen-covered Ru(0001). Phys. Rev. B 2001, 63, 205419.
Starr, D. E.; Bluhm, H. CO adsorption and dissociation on Ru(0001) at elevated pressures. Surf. Sci. 2013, 608, 241-248.
Blume, R.; Hävecker, M.; Zafeiratos, S.; Teschner, D.; Kleimenov, E.; Knop-Gericke, A.; Schlögl, R.; Barinov, A.; Dudin, P.; Kiskinova, M. Catalytically active states of Ru(0001) catalyst in CO oxidation reaction. J. Catal. 2006, 239, 354-361.
Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.
Dong A. Y.; Fu, Q.; Wei, M. M.; Liu, Y.; Ning, Y. X.; Yang, F.; Bluhm, H.; Bao, X. H. Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient conditions. Surf. Sci. 2014, doi: 10.1016/j.susc.2014.10.008.
Liu, L.; Siegel, D. A.; Chen, W.; Liu, P. Z.; Guo, J. J.; Duscher, G.; Zhao, C.; Wang, H.; Wang, W. L.; Bai, X. D.; McCarty, K. F.; Zhang, Z. Y.; Gu, G. Unusual role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 16670-16675.
Kidambi, P. R.; Bayer, B. C.; Blume, R.; Wang, Z. J.; Baehtz, C.; Weatherup, R. S.; Willinger, M. G.; Schlögl, R.; Hofmann, S. Observing graphene grow: Catalyst-graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 2013, 13, 4769-4778.