AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nickel-coated silicon photocathode for water splitting in alkaline electrolytes

Ju Feng1,§Ming Gong1,§Michael J. Kenney1,§Justin Z. Wu1Bo Zhang1Yanguang Li2Hongjie Dai1( )
Department of ChemistryStanford UniversityStanfordCalifornia94305USA
Institute of Functional Nano & Soft MaterialsSoochow UniversitySuzhou215123China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Photoelectrochemical (PEC) water splitting is a promising approach to harvest and store solar energy [1]. Silicon has been widely investigated for PEC photoelectrodes due to its suitable band gap (1.12 eV) matching the solar spectrum [2]. Here we investigate employing nickel both as a catalyst and protecting layer of a p-type silicon photocathode for photoelectrochemical hydrogen evolution in basic electrolytes for the first time. The silicon photocathode was made by depositing 15 nm Ti on a p-type silicon wafer followed by 5 nm Ni. The photocathode afforded an onset potential of ~0.3 V vs. the reversible hydrogen electrode (RHE) in alkaline solution (1 M KOH). The stability of the Ni/Ti/p-Si photocathode showed a 100 mV decay over 12 h in KOH, but the stability was significantly improved when the photocathode was operated in potassium borate buffer solution (pH ≈ 9.5). The electrode surface was found to remain intact after 12 h of continuous operation at a constant current density of 10 mA/cm2 in potassium borate buffer, suggesting that Ni affords good protection of Si based photocathodes in borate buffers.

Electronic Supplementary Material

Download File(s)
12274_2014_643_MOESM1_ESM.pdf (1.6 MB)

References

1

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

2

Hamann, T. W.; Lewis, N. S. Control of the stability, electron-transfer kinetics, and pH-dependent energetics of Si/H2O interfaces through methyl termination of Si(111) surfaces. J Phys. Chem. B 2006, 110, 22291-22294.

3
Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M. et al. Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005. http://www.osti.gov/scitech/servlets/purl/899136.https://doi.org/10.2172/899136
4

Lewis, N. S. Toward cost-effective solar energy use. Science 2007, 315, 798-801.

5

Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141-145.

6

Sivula, K.; Gratzel, M. Tandem photoelectrochemical cells for water splitting. In Photoelectrochemical Water Splitting: Materials, Processes and Architectures; the Royal Society of Chemistry: Cambridge, 2013; pp 83-108.

7

Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by Cu ion implantation. Nano Res. 2014, 7, 353-364.

8

Zhou, W.; Li, T.; Wang, J. Q.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G. H.; Wang, L.; Ren, Z. Y.; Jiang, B. J. et al. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731-742.

9

Park, S.; Kim, D.; Lee, C. W.; Seo, S. D.; Kim, H. J.; Han, H. S.; Hong, K. S.; Kim, D. W. Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res. 2014, 7, 144-153.

10

Shi, J. X.; Liu, Y. X.; Peng, Q.; Li, Y. D. ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells. Nano Res. 2013, 6, 441-448.

11

Singh, R. Why silicon is and will remain the dominant photovoltaic material. J. Nanophoton. 2009, 3, 032503.

12

Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Björketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 2011, 10, 434-438.

13

Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 2012, 51, 9128-9131.

14

Tran, P. D.; Pramana, S. S.; Kale, V. S.; Nguyen, M.; Chiam, S. Y.; Batabyal, S. K.; Wong, L. H.; Barber, J.; Loo, J. Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation. Chem. -Eur. J. 2012, 18, 13994-13999.

15

Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S. Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 2012, 5, 9653-9661.

16

Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 2013, 12, 562-568.

17

Lin, Y. J.; Battaglia, C.; Boccard, M.; Hettick, M.; Yu, Z. B.; Ballif, C.; Ager, J. W.; Javey, A. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 2013, 13, 5615-5618.

18

Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 2013, 135, 1057-1064.

19

Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 2011, 133, 1216-1219.

20

Oh, J.; Deutsch, T. G.; Yuan, H. C.; Branz, H. M. Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ. Sci. 2011, 4, 1690-1694.

21

Oh, I.; Kye, J.; Hwang, S. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 2012, 12, 298-302.

22

McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 2011, 4, 3573-3583.

23

Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Björketun, M. E.; Herbst, K.; Bech, L.; Seger, B.; Pedersen, T.; Hansen, O.; Rossmeisl, J. et al. Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters. J. Photon. Energy 2012, 2, 026001.

24

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901-4934.

25

Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836-840.

26

Tuomi, D. The forming process in nickel positive electrodes. J. Electrochem. Soc. 1965, 112, 1-12.

27

Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; de Guibert, A. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J. Power Sources 1982, 8, 229-255.

Nano Research
Pages 1577-1583
Cite this article:
Feng J, Gong M, Kenney MJ, et al. Nickel-coated silicon photocathode for water splitting in alkaline electrolytes. Nano Research, 2015, 8(5): 1577-1583. https://doi.org/10.1007/s12274-014-0643-4

844

Views

64

Crossref

N/A

Web of Science

69

Scopus

8

CSCD

Altmetrics

Received: 02 September 2014
Revised: 05 November 2014
Accepted: 09 November 2014
Published: 17 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return