Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A facile strategy was designed for the fabrication of Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures (FTHs) by combining the versatility of the electrospinning technique and the hydrothermal growth method. The hierarchical architecture of Fe3O4 nanoparticles decorated on TiO2 nanofibers enables the successful integration of the binary composite into batteries to address structural stability and low capacity. In the resulting unique architecture of FTHs, the 1D heterostructures relieve the strain caused by severe volume changes of Fe3O4 during numerous charge-discharge cycles, and thus suppress the degradation of the electrode material. As a result, FTHs show excellent performance including higher reversible capacity, excellent cycle life, and good rate performance over a wide temperature range owing to the synergistic effect of the binary composition of TiO2 and Fe3O4 and the unique features of the hierarchical nanofibers.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.
Chen, J.; Xu, L.; Li, W.; Gou, X. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–586.
Yu, Y.; Chen, C. H.; Shi, Y. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 2007, 19, 993–997.
Chen, J.; Cheng, F. Y. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 2009, 42, 713–723.
Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z. Y.; Lou, X. W. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 2011, 133, 17146–17148.
Mai, L.; Xu, L.; Han, C.; Xu, X.; Luo, Y.; Zhao, S.; Zhao, Y. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.
Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium- storage properties. Phys. Chem. Chem. Phys. 2011, 13, 16735–16740.
Shi, Y. F.; Guo, B. K.; Corr, S. A.; Shi, Q. S.; Hu, Y. S.; Heier, K. R.; Chen, L. Q.; Seshadri, R.; Stucky, G. D. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 2009, 9, 4215–4220.
Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong- life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.
Lai, X. Y.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci. 2012, 5, 5604–5618.
Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 2013, 52, 6417–6420.
Xu, S. M.; Hessel, C. M.; Ren, H.; Yu, R. B.; Jin, Q.; Yang, M.; Zhao, H. J.; Wang, D. α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 2014, 27, 632–637.
Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 2006, 18, 1421–1426.
Liu, J. H.; Chen, J. S.; Wei, X. F.; Lou, X. W.; Liu, X. W. Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage. Adv. Mater. 2011, 23, 998–1002.
Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multi-shelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, DOI: 10.1021/ nl503378a.
Wu, H. B.; Chen, J. S.; Lou, X. W.; Hng, H. H. Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale 2011, 3, 4082–4084.
Armstrong, A. R.; Armstrong, G.; Canales, J.; García, R.; Bruce, P. G. Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 2005, 17, 862–865.
Wagemaker, M.; Borghols, W. J. H.; Mulder, F. M. Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 2007, 129, 4323–4327.
Chen, X.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.
Rahman, M. M.; Wang, J. Z.; Hassan, M. F.; Wexler, D.; Liu, H. K. Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12–TiO2: A nanocomposite anode material for Li-ion batteries. Adv. Energy Mater. 2011, 1, 212–220.
Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Surface modification of electrospun TiO2 nanofibers via layer-by- layer self-assembly for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 4910–4915.
Zhang, X.; Chen, H. X.; Xie, Y. P.; Guo, J. X. Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. J. Mater. Chem. A 2014, 2, 3912–3918.
Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M.; Yu, T. Seed-assisted synthesis of highly ordered TiO2@α- Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559– 6566.
Wang, H. G.; Ma, D. L.; Huang, X. L.; Yuan, S.; Zhang, X. B. General and controllable synthesis strategy of metal oxide/ TiO2 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 2012, 2, 701.
Yang, Z. X.; Du, G. D.; Meng, Q.; Guo, Z. P.; Yu, X. B.; Chen, Z. X.; Guo, T. L.; Zeng, R. Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications. RSC Adv. 2011, 1, 1834–1840.
Parka, H.; Song, T.; Han, H.; Devadoss, A.; Yuh, J.; Choi, C.; Paik, U. SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries. Electrochem. Commun. 2012, 22, 81–84.
Jeun, J. H.; Park, K. Y.; Kim, D. H.; Kim, W. S.; Kim, H. C.; Lee, B. S.; Kim, H.; Yu, W. R.; Kang, K.; Hong, S. H. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Nanoscale 2013, 5, 8480–8483.
Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interface 2010, 2, 2046–2052.
He, B. L.; Dong, B.; Li, H. L. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium-ion battery. Electrochem. Commun. 2007, 9, 425–430.
Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.
Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946.
Zhu, T.; Chen, J. S.; Lou, X. W. Glucose-assisted one-pot synthesis of FeOOH nanorods and their transformation to Fe3O4@carbon nanorods for application in lithium ion batteries. J. Phys. Chem. C 2011, 115, 9814–9820.
Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high- performance anodes for lithium ion batteries. Nano Lett. 2013, 13, 818–823.
Lv, P. P.; Zhao, H. L.; Zeng, Z. P.; Wang, J.; Zhang, T. H.; Li, X. W. Facile preparation and electrochemical properties of carbon coated Fe3O4 as anode material for lithium-ion batteries. J. Power Sources 2014, 259, 92–97.
Ito, S.; Nakaoko, K.; Kawamura, M.; Ui, K.; Fujimoto, K.; Koura, N. Lithium battery having a large capacity using Fe3O4 as a cathode material. J. Power Sources 2005, 146, 319–322.
Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M. Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made by electrodeposition. Adv. Funct. Mater. 2006, 16, 2281–2287.
Liu, H.; Wang, G.; Wang, J.; Wexler, D. Magnetite/carbon core–shell nanorods as anode materials for lithium-ion batteries. Electrochem. Commun. 2008, 10, 1879–1882.
Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306–5313.
Choi, S. H.; Son, J. W.; Yoon, Y. S.; Kim, J. Particle size effects on temperature-dependent performance of LiCoO2 in lithium batteries. J. Power Sources 2006, 158, 1419–1424.
Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. Q. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009, 3, 2199–2206.
Yan, J.; Sumboja, A.; Khoo, E.; Lee, P. S. V2O5 loaded on SnO2 nanowires for high-rate Li ion batteries. Adv. Mater. 2011, 23, 746–750.
Zhou, W. W.; Cheng, C. W.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T.; Fan, H. J. Epitaxial growth of branched α-Fe2O3/SnO2 nano- heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.