Graphical Abstract

Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for a wide variety of applications. Herein, we present a facile, general, and cost-effective strategy for the synthesis of noble metal nanoparticles with hollow structures, which is based on the inside-out diffusion of Ag in solid-state core-shell nanoparticles. This approach starts with the preparation of core-shell nanoparticles with Ag residing in the core region, which are then loaded on a solid substrate and aged in air to allow the inside-out diffusion of Ag from the core region, leading to the formation of monometallic or alloy noble metal nanoparticles with a hollow interior. The synthesis was carried out at room temperature and could be achieved on different solid substrates. In particular, the inside-out diffusion of Ag calls for specific concern with respect to the evaluation of the catalytic performance of the Ag-based core-shell nanoparticles since it may potentially interfere with the physical and chemical properties of the core-shell particles.
Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Ni1-xPtx (x = 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg. Chem. 2007, 46, 788-794.
Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098-1106.
Bai, F.; Sun, Z. C.; Wu, H. M.; Haddad, R. E.; Xiao, X. Y.; Fan, H. Y. Templated photocatalytic synthesis of well-defined platinum hollow nanostructures with enhanced catalytic performance for methanol oxidation. Nano Lett. 2011, 11, 3759-3762.
Liang, H. -P.; Zhang, H. -M.; Hu, J. -S.; Guo, Y. -G.; Wan, L. -J.; Bai, C. -L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 2004, 43, 1540-1543.
Yang, J.; Lee, J. Y.; Too, H. -P.; Valiyaveettil, S. A bis(p- sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. J. Phys. Chem. B 2006, 110, 125-129.
Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762-16765.
Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111-1114.
Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. Hollow titania spheres from layered precursor deposotion on sacrificial colloidal core particles. Adv. Mater. 2001, 13, 740-744.
Schmidt, H. T.; Ostafin, A. E. Liposome directed growth of calcium phosphate nanoshells. Adv. Mater. 2002, 14, 532- 535.
Yang, Z. Z.; Niu, Z. W.; Lu, Y. F.; Hu, Z. B.; Han, C. C. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Agnew. Chem. Int. Ed. 2003, 42, 1943-1945.
Lou, X. W.; Yuan, C. L.; Archer, L. A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. Small 2007, 3, 261-265.
Peng, B.; Meng, X. W.; Tang, F. X.; Ren, X. L.; Chen, D.; Ren, J. General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles. J. Phys. Chem. C 2009, 113, 20240-20245.
Wang, Y. Q.; Tang, C. J.; Deng, Q.; Liang, C. H.; Ng, D. H. L.; Kwong, F. -L.; Wang, H. Q.; Cai, W. P.; Zhang, L. D.; Wang, G. Z. A versatile method for controlled synthesis of porous hollow spheres. Langmuir 2010, 26, 14830-14834.
Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738-4741.
Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082-16091.
Chen, H. M.; Liu, R. -S.; Lo, M. -Y.; Chang, S. -C.; Tsai, L. -D.; Peng, Y. -M.; Lee, J. -F. Hollow platinum spheres with nano- channels: Synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 2008, 112, 7522-7526.
Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587-1595.
González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science 2011, 334, 1377-1380.
Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, P. A. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.
Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 2006, 16, 649-662.
Zeng, H. C. Ostwald ripening: A synthetic approach for hollow nanomaterials. Curr. Nanosci. 2007, 3, 177-181.
Caruso, F. Hollow capsule processing through colloidal templating and self-assembly. Chem. Eur. J. 2000, 6, 413-419.
Macdonald, J. E.; Sadan, M. B.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. Nat. Mater. 2010, 9, 810-815.
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.
Han, L.; Liu, H.; Cui, P. L.; Peng, Z. J.; Zhang, S. J.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Sci. Rep. 2014, 4, 6414.
Zhdanov, V. P.; Kasemo, B. On the feasibility of strain- induced formation of hollows during hydriding or oxidation of metal nanoparticles. Nano Lett. 2009, 9, 2172-2176.
Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019.
Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621-3638.
Liu, H.; Qu, J. L.; Chen, Y. F.; Li, J. Q.; Ye, F.; Lee, J. Y.; Yang, J. Hollow and cage-bell structured nanomaterials of noble metals. J. Am. Chem. Soc. 2012, 134, 11602-11610.
Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733-1739.
Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 2014, 26, 22-33.
Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper Objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950- 8957.
Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F.; Xu, G. Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 1996, 12, 909-912.
Akaighe, N.; MacCuspie, R. I.; Navarro, D. A.; Aga, D. S.; Banerjee, S.; Sohn, M.; Sharma, V. K. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011, 45, 3895-3901.
Ostwald, W. Studien uber die bildung und umwandlung fester korper. Z. Phys. Chem. 1897, 22, 289-330.
Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855-863.
Huang, R.; Zhu, A. M.; Gong, Y.; Zhang, Q. G.; Liu, Q. L. Facile method to prepare monodispersed hollow PtAu sphere with TiO2 colloidal sphere as a template. Ind. Eng. Chem. Res. 2013, 52, 7432-7438.
Liu, H.; Ye, F.; Yang, J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind. Eng. Chem. Res. 2014, 53, 5925-5931.
Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078-6089.
Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J. Q.; Vajtai, R.; Ajayan, P. M. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 2011, 115, 9403-9409.
Parsons, R.; VanderNoot, T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem. Interfacial Electrochem. 1988, 257, 9-45.
de Brujin, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3-22.
Antolini, E.; Lopes, T.; Gonzalez, E. R. An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J. Alloys Compd. 2008, 461, 253-262.
Yang, J. H.; Yang, J.; Ying, J. Y. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 2012, 6, 9373-9382.
Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571-580.
Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822-835.
Liu, H.; Yang, J. Bimetallic Ag-hollow Pt heterodimers via inside-out migration of Ag in core-shell Ag-Pt nanoparticles at elevated temperature. J. Mater. Chem. A 2014, 2, 7075- 7081.
Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep. 2014, 4, 3969.