Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Reducing Pt loading, while improving electrocatalytic activity and the stability of Pt-based nanostructured materials, is currently a key challenge in green energy technology. Herein, we report the controllable synthesis of tri-metallic (Au@Ag@Pt) and bimetallic (Ag@Pt) particles consisting of a controllable thin Pt shell, via interface-mediated galvanic displacement. Through oil-ethanol-H2O interface mediation, the controllable "out to in" displacement of Ag atoms to Pt enables the formation of a thin Pt shell on monodisperse sub-ten-nanometer Au@Ag and Ag nanocrystals. The synthesized nanoparticles with a thin Pt shell exhibited potential catalytic activity towards the oxygen reduction reaction (ORR) due to the high exposure of Pt atoms.
Lim, B.; Pedro, M. J.; Camargo, H. C.; Cho, C. E.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.
Chen, C.; Kang, Y. J.; Huo, Z.Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, A. J.; Manovrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.
Sasaki, K.; Naohara, H.; Choi, Y. M.; Cai, Y.; Chen, W. F.; Liu, P.; Radoslav, R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Commun. 2012, 3, 1115–1118.
Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264.
Chung, Y. H.; Chung, D. Y.; Jung, N.; Sung, Y. E. Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J. Phys. Chem. Let. 2013, 4, 1304–1309.
Fu, G.; Wu, K.; Lin, J.; Tang, Y.; Chen, Y.; Zhou, Y.; Lu, T. One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826–9834.
Wu, J. B.; Zhang, J. L. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.
Liang, H. W.; Cao, X.; Zhou, F.; Cui, C H.; Zhang, W. J.; Yu, S. H. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.
Miyabayashi, K.; Nishihara, H.; Miyake, M. Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 2014, 30, 2936–2942.
Wang, D. L.; Yu, Y. C.; Hovden, R.; Ercius, P.; Mundy J. A.; Chen, H.; Jonah, H. R.; David, A. M.; Francis, J. D.; Héctor, D. A. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano. Lett. 2012, 12, 5230–5238.
Kim, K.; Kim, K. L.; Shin, K. S., Coreduced Pt/Ag alloy nanoparticles: surface-enhanced Raman scattering and electrocatalytic activity. J. Phys. Chem. C 2011, 115, 23374–23380.
Liu, Z. L.; Lin, X. L.; Lee, J. Y.; Zhang, W. D.; Han, M.; Gan, M. L. Preparation and characterization of platinum- based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells preparation and characterization of platinum-based. Langmuir 2002, 18, 4054–4060.
Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 2011, 50, 422–426.
Morozan, A.; Jousselme, B.; Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Ener. Environ. Sci. 2011, 4, 1238–1241.
Yang, J. H.; Yang, J.; Ying, J. Y. Morphology and lateral strain control of Pt nanoparticles via core/shell construction using alloy AgPd core toward oxygen reduction reaction, ACS nano 2012, 6, 9373–9382.
Zhang, Y.; Hsieh, Y.; Vyacheslav, V.; Su, D.; Wei, A.; Rui, S.; Zhu, Y. M.; Liu, P.; Jia, X. W.; Radoslav, R. A. High performance Pt monolayer catalysts produced via core- catalyzed coating in ethanol. ACS Catal. 2014, 4, 738–742.
Li, C.; Yamauchi, Y. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Phys Chem Chem Phys 2013, 15, 3490–6.
Chaudhuri, G. R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.
Li, Y.; Qi, W. H.; Huang, B.Y.; Ji, W. H.; Wang, M. P. Size- and composition-dependent structural stability of core–shell and alloy Pd–Pt and Au–Ag nanoparticles. J. Phys. Chem. C 2013, 117, 15394–15401.
Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.
Yang, H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem. Int. Ed. 2011, 50, 2674–2676.
Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098–1106.
Kim, S. J.; Ah, C. S.; Jang, D. J. Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles. Adv. Mater. 2007, 19, 1064–1068.
Li, T.; You, H. J.; Xu, M. W.; Song, X. P.; Fang, J. X. Electrocatalytic properties of hollow coral-like platinum mesocrystals. ACS Appl. Mater. Inter. 2012, 4, 6942–6948.
Liu, H.; Ye, F.; Yang, J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind. & Eng. Chemistry Research 2014, 53, 5925–5931.
Feng, Y. Y.; Ma, J., Zhang, G. R.; Zhao, D.; Xu, B. Q. An interfacially alloyed Pt/Ag cathode catalyst for the electrochemical reduction of oxygen. Chin. J. Catal. 2009, 30, 776–779.
Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys, Nano Res. 2010, 3, 574–580.
Peng, Z.; Yang, H. Ag–Pt alloy nanoparticles with the compositions in the miscibility gap. J. Solid State Chem. 2008, 181, 1546–1551.
Wang, C.; Markovic, N. M.; Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 891–898.
Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: an effective platform for catalytic activity tuning. Sci. Rep. 2014, 4, 3969–3973.
Liu, H.; Yang, J. Bimetallic Ag–hollow Pt heterodimers via inside-out migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature. J. Mater. Chem. A 2014, 2, 7075–7079.
Park, S.; Xie, Y.; Weaver, M. J. Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 2002, 18, 5791– 5798.
Kristiana, N.; Yua, Y.; Gunawana, P.; Xu, R.; Deng, W.; Liu, X.; Wang, X. Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim. Acta 2009, 54, 4916–4924.
Zhang, J. T.; Tang, Y.; Weng, L.; Ouyang, M. Versatile strategy for precisely tailored core@shell nanostructure with single shell layer accuracy: the case of metallic shell, Nano lett. 2009, 9, 4061–4065.
Wang, X.; Peng, Q.; Li, Y. D. Interface-mediated growth of monodispersed nanostructures. Acc. Chem. Res. 2007, 40, 635–643.
Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.
Zhang, H.; Jin, M.; Wang, J.; Li, W.; CaMargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.
Yang, Y.; Liu, J. Y.; Fu, Z.; Qin, D. Galvanic replacement- free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.
Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.
Wojtysiak, S.; Gullónb, J. S.; Dłuzewski, P.; Kudelskia, A. Synthesis of core–shell silver–platinum nanoparticles, improving shell integrity. Colloids and Surfaces A: Physicochem and Eng. Aspects 2014, 441, 178–183.
Neumann, C. C. M.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511–524.
Lu Y. Z.; Wang Y. C.; Chen, W. Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity. Journal Power Source 2011, 196, 3033–3038.
Liu, H.; Qu, J. L.; Chen, Y. F.; Li, J. Q.; Ye, F.; Lee, J. Y.; Yang, J. Hollow and cage-bell structured nanomaterials of noble metals. J. Am. Chem. Soc. 2012, 134, 11602–11610.
Chen, H. M.; Liu, R. S.; Lo, M.Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. Hollow platinum spheres with nano- channels synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 2008, 112, 7522–7526.
Zhang, X.; Guo, J.; Guan, P.; Liu, C.; Huang, H.; Xue, F.; Dong, X.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nature Commun. 2013, 4, 1924–1927.