AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction

Ntirikwendera Deogratias1Muwei Ji1Yong Zhang1Jiajia Liu1Jiatao Zhang1,2( )Hesun Zhu1
Research Center of Materials ScienceSchool of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
Department of Materials Physics and ChemistryBeijing Institute of TechnologyBeijing100081China
Show Author Information

Graphical Abstract

Abstract

Reducing Pt loading, while improving electrocatalytic activity and the stability of Pt-based nanostructured materials, is currently a key challenge in green energy technology. Herein, we report the controllable synthesis of tri-metallic (Au@Ag@Pt) and bimetallic (Ag@Pt) particles consisting of a controllable thin Pt shell, via interface-mediated galvanic displacement. Through oil-ethanol-H2O interface mediation, the controllable "out to in" displacement of Ag atoms to Pt enables the formation of a thin Pt shell on monodisperse sub-ten-nanometer Au@Ag and Ag nanocrystals. The synthesized nanoparticles with a thin Pt shell exhibited potential catalytic activity towards the oxygen reduction reaction (ORR) due to the high exposure of Pt atoms.

Electronic Supplementary Material

Download File(s)
12274_2014_664_MOESM1_ESM.pdf (3.5 MB)

References

1

Lim, B.; Pedro, M. J.; Camargo, H. C.; Cho, C. E.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

2

Chen, C.; Kang, Y. J.; Huo, Z.Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, A. J.; Manovrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

3

Sasaki, K.; Naohara, H.; Choi, Y. M.; Cai, Y.; Chen, W. F.; Liu, P.; Radoslav, R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Commun. 2012, 3, 1115–1118.

4

Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264.

5

Chung, Y. H.; Chung, D. Y.; Jung, N.; Sung, Y. E. Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J. Phys. Chem. Let. 2013, 4, 1304–1309.

6

Fu, G.; Wu, K.; Lin, J.; Tang, Y.; Chen, Y.; Zhou, Y.; Lu, T. One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826–9834.

7

Wu, J. B.; Zhang, J. L. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984–4985.

8

Liang, H. W.; Cao, X.; Zhou, F.; Cui, C H.; Zhang, W. J.; Yu, S. H. A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2011, 23, 1467–1471.

9

Miyabayashi, K.; Nishihara, H.; Miyake, M. Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 2014, 30, 2936–2942.

10

Wang, D. L.; Yu, Y. C.; Hovden, R.; Ercius, P.; Mundy J. A.; Chen, H.; Jonah, H. R.; David, A. M.; Francis, J. D.; Héctor, D. A. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano. Lett. 2012, 12, 5230–5238.

11

Kim, K.; Kim, K. L.; Shin, K. S., Coreduced Pt/Ag alloy nanoparticles: surface-enhanced Raman scattering and electrocatalytic activity. J. Phys. Chem. C 2011, 115, 23374–23380.

12

Liu, Z. L.; Lin, X. L.; Lee, J. Y.; Zhang, W. D.; Han, M.; Gan, M. L. Preparation and characterization of platinum- based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells preparation and characterization of platinum-based. Langmuir 2002, 18, 4054–4060.

13

Sun, S. H.; Zhang, G. X.; Geng, D. S.; Chen, Y. G.; Li, R. Y.; Cai, M.; Sun, X. L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: Multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 2011, 50, 422–426.

14

Morozan, A.; Jousselme, B.; Palacin S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Ener. Environ. Sci. 2011, 4, 1238–1241.

15

Yang, J. H.; Yang, J.; Ying, J. Y. Morphology and lateral strain control of Pt nanoparticles via core/shell construction using alloy AgPd core toward oxygen reduction reaction, ACS nano 2012, 6, 9373–9382.

16

Zhang, Y.; Hsieh, Y.; Vyacheslav, V.; Su, D.; Wei, A.; Rui, S.; Zhu, Y. M.; Liu, P.; Jia, X. W.; Radoslav, R. A. High performance Pt monolayer catalysts produced via core- catalyzed coating in ethanol. ACS Catal. 2014, 4, 738–742.

17

Li, C.; Yamauchi, Y. Facile solution synthesis of Ag@Pt core-shell nanoparticles with dendritic Pt shells. Phys Chem Chem Phys 2013, 15, 3490–6.

18

Chaudhuri, G. R.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

19

Li, Y.; Qi, W. H.; Huang, B.Y.; Ji, W. H.; Wang, M. P. Size- and composition-dependent structural stability of core–shell and alloy Pd–Pt and Au–Ag nanoparticles. J. Phys. Chem. C 2013, 117, 15394–15401.

20

Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

21

Yang, H. Platinum-based electrocatalysts with core-shell nanostructures. Angew. Chem. Int. Ed. 2011, 50, 2674–2676.

22

Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098–1106.

23

Kim, S. J.; Ah, C. S.; Jang, D. J. Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles. Adv. Mater. 2007, 19, 1064–1068.

24

Li, T.; You, H. J.; Xu, M. W.; Song, X. P.; Fang, J. X. Electrocatalytic properties of hollow coral-like platinum mesocrystals. ACS Appl. Mater. Inter. 2012, 4, 6942–6948.

25

Liu, H.; Ye, F.; Yang, J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind. & Eng. Chemistry Research 2014, 53, 5925–5931.

26

Feng, Y. Y.; Ma, J., Zhang, G. R.; Zhao, D.; Xu, B. Q. An interfacially alloyed Pt/Ag cathode catalyst for the electrochemical reduction of oxygen. Chin. J. Catal. 2009, 30, 776–779.

27

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys, Nano Res. 2010, 3, 574–580.

28

Peng, Z.; Yang, H. Ag–Pt alloy nanoparticles with the compositions in the miscibility gap. J. Solid State Chem. 2008, 181, 1546–1551.

29

Wang, C.; Markovic, N. M.; Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 891–898.

30

Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: an effective platform for catalytic activity tuning. Sci. Rep. 2014, 4, 3969–3973.

31

Liu, H.; Yang, J. Bimetallic Ag–hollow Pt heterodimers via inside-out migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature. J. Mater. Chem. A 2014, 2, 7075–7079.

32

Park, S.; Xie, Y.; Weaver, M. J. Electrocatalytic pathways on carbon-supported platinum nanoparticles: Comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 2002, 18, 5791– 5798.

33

Kristiana, N.; Yua, Y.; Gunawana, P.; Xu, R.; Deng, W.; Liu, X.; Wang, X. Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation. Electrochim. Acta 2009, 54, 4916–4924.

34

Zhang, J. T.; Tang, Y.; Weng, L.; Ouyang, M. Versatile strategy for precisely tailored core@shell nanostructure with single shell layer accuracy: the case of metallic shell, Nano lett. 2009, 9, 4061–4065.

35

Wang, X.; Peng, Q.; Li, Y. D. Interface-mediated growth of monodispersed nanostructures. Acc. Chem. Res. 2007, 40, 635–643.

36

Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

37

Zhang, H.; Jin, M.; Wang, J.; Li, W.; CaMargo, P. H. C.; Kim, M. J.; Yang, D.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd−Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

38

Yang, Y.; Liu, J. Y.; Fu, Z.; Qin, D. Galvanic replacement- free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

39

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

40

Wojtysiak, S.; Gullónb, J. S.; Dłuzewski, P.; Kudelskia, A. Synthesis of core–shell silver–platinum nanoparticles, improving shell integrity. Colloids and Surfaces A: Physicochem and Eng. Aspects 2014, 441, 178–183.

41

Neumann, C. C. M.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511–524.

42

Lu Y. Z.; Wang Y. C.; Chen, W. Silver nanorods for oxygen reduction: Strong effects of protecting ligand on the electrocatalytic activity. Journal Power Source 2011, 196, 3033–3038.

43

Liu, H.; Qu, J. L.; Chen, Y. F.; Li, J. Q.; Ye, F.; Lee, J. Y.; Yang, J. Hollow and cage-bell structured nanomaterials of noble metals. J. Am. Chem. Soc. 2012, 134, 11602–11610.

44

Chen, H. M.; Liu, R. S.; Lo, M.Y.; Chang, S. C.; Tsai, L. D.; Peng, Y. M.; Lee, J. Hollow platinum spheres with nano- channels synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 2008, 112, 7522–7526.

45

Zhang, X.; Guo, J.; Guan, P.; Liu, C.; Huang, H.; Xue, F.; Dong, X.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nature Commun. 2013, 4, 1924–1927.

Nano Research
Pages 271-280
Cite this article:
Deogratias N, Ji M, Zhang Y, et al. Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Research, 2015, 8(1): 271-280. https://doi.org/10.1007/s12274-014-0664-z
Part of a topical collection:

651

Views

31

Crossref

N/A

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 11 September 2014
Revised: 28 November 2014
Accepted: 30 November 2014
Published: 27 December 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return