AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride

Camilla K. Oliveira1,Egleidson F. A. Gomes1Mariana C. Prado1Thonimar V. Alencar1Regiane Nascimento1Leandro M. Malard1Ronaldo J. C. Batista2Alan B. de Oliveira2Helio Chacham1Ana M. de Paula1Bernardo R. A. Neves1( )
Departamento de FísicaICExUniversidade Federal de Minas Gerais - UFMG C.P. 702Belo Horizonte30123-970Brazil
Departamento de FísicaICEBUniversidade Federal de Ouro Preto - UFOPOuro Preto35400-000Brazil

Present address: Departamento de Física, Universidade Federal do Paraná – UFPR, Caixa Postal 19044, 81531-990 – Curitiba, Brazil

Show Author Information

Graphical Abstract

Abstract

Understanding layer interplay is the key to utilizing layered heterostructures formed by the stacking of different two-dimensional materials for device applications. Boron nitride has been demonstrated to be an ideal substrate on which to build graphene devices with improved mobilities. Here we present studies on the morphology and optical response of annealed few-layer hexagonal boron nitride flakes deposited on a silicon substrate that reveal the formation of linear wrinkles along well-defined crystallographic directions. The wrinkles formed a network of primarily threefold and occasionally fourfold origami-type junctions throughout the sample, and all threefold junctions and wrinkles formed along the armchair crystallographic direction. Furthermore, molecular dynamics simulations yielded, through spontaneous symmetry breaking, wrinkle junction morphologies that are consistent with both the experimental results and the proposed origami-folding model. Our findings indicate that this morphology may be a general feature of several two-dimensional materials under proper stress-strain conditions, resulting in direct consequences in device strain engineering.

Electronic Supplementary Material

Download File(s)
12274_2014_665_MOESM1_ESM.pdf (663.7 KB)

References

1

Bower, A. F. Applied Mechanics of Solids; CRC Press: Florida, 2009.

2

Lakes, R. Foam structures with a negative Poisson's ratio. Science1987, 235, 1038–1040.

3

Baughman, R. H.; Stafstrom, S.; Cui, C.; Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 1998, 279, 1522–1524.

4

Barboza, A. P. M.; Chacham, H.; Oliveira, C. K.; Fernandes, T. F. D.; Martins Ferreira, E. H.; Archanjo, B. S.; Batista, R. J. C.; de Oliveira, A. B.; Neves, B. R. A. Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. Nano Lett. 2012, 12, 2313–2317.

5

Cairns, A. B.; Catafesta, J.; Levelut, C.; Rouquette, J.; van der Lee, A.; Peters, L.; Thompson, A. L.; Dmitriev, V.; Haines, J.; Goodwin, A. L. Giant negative linear compressibility in zinc dicyanoaurate. Nat. Mater. 2013, 12, 212–216.

6

Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina A. V.; Zolotukhin, A. A. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45, 2017–2021.

7

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high- quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

8

Xu, K.; Cao, P.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446– 4451.

9

Robertson, A. W.; Bachmatiuk, A.; Wu, Y. A.; Schäffel, F.; Büchner, B.; Rümmeli, M. H.; Warner, J. H. Structural distortions in few-layer graphene creases. ACS Nano 2011, 5, 9984–9991.

10

Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

11

Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou1, Q.; Kok, G.; Koon, W.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200–207.

12

Lherbier, A.; Roche, S.; Restrepo, O. A.; Niquet, Y. M.; Delcorte, A.; Charlier, J. C.; Highly defective graphene: A key prototype of two dimensional Anderson insulators. Nano Res. 2013, 6, 326–334.

13

Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

14

Zhang, K.; Arroyo, M. Understanding and strain-engineering wrinkle networks in supported graphene through simulations. J. Mech. Phys. Solids 2014, 72, 61–74.

15

Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2010, 6, 30–33.

16

Feng, J.; Qian, X.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

17

Naumov, I.; Bratkovsky, A. M.; Ranjan, V. Unusual flexoelectric effect in twodimensional noncentrosymmetric sp2-bonded crystals. Phys. Rev. Lett. 2009, 102, 217601.

18

Roy, K.; Bandyopadhyay, S.; Atulasimha, J. Hybrid spintronics and straintronics: A magnetic technology for ultra-low energy computing and signal processing. Appl. Phys. Lett 2011, 99, 063108.

19

Pan, Z.; Liu, N.; Fu, L.; Liu, Z. Wrinkle engineering: A new approach to massive graphene nanoribbon arrays. J. Am. Chem. Soc. 2011, 133, 17578–17581.

20

Prado, M. C.; Nascimento, R.; Moura, L. G.; Matos, M. J. S.; Mazzoni, M. S. C.; Cancado, L. G.; Chacham, H.; Neves, B. R. A. Two-dimensional molecular crystals of phosphonic acids on graphene. ACS Nano 2011, 5, 394–398.

21

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high- quality graphene electronics. Nat. Nanotech. 2010, 5, 722–726.

22

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 40, A1133–A1138.

23

Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-n materials simulation. Condens. Matter 2002, 14, 2745–2779.

24

Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401.

25

Li, Y.; Rao, Y.; Mak, K. F.; You, Y.; Wang, S.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

26

Paszkowicz, W.; Pelka, J. B.; Knapp, M.; Szyszko, T.; Podsiadlo, S. Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl. Phys. A 2002, 75, 431–435.

27

Li, L. H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 2014, 8, 1457–1462.

28

Kim, K.; Artyukhov, V. I.; Regan, W.; Liu, Y.; Crommie, M. F.; Yakobson, B. I.; Zettl, A. Ripping graphene: Preferred directions. Nano Lett. 2012, 12, 293–297.

29

Oliveira, C. K.; Matos, M. J. S.; Mazzoni, M. S. C.; Chacham, H.; Neves, B. R. A. Anomalous response of supported few- layer hexagonal boron nitride to DC electric fields: A confined water effect? Nanotechnology2012, 23, 175703.

30

Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19.

31

Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991.

32

Albe, K.; Möller, W. Modelling of boron nitride: Atomic scale simulations on thin film growth. Comp. Mat. Sci. 1998, 10, 111–115.

33

Dappe, Y. J.; Basanta, M. A.; Flores, F.; Ortega, J. Weak chemical interaction and van der Waals forces between graphene layers: A combined density functional and intermolecular perturbation theory approach. Phys. Rev. B 2006, 74, 205434.

34

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511.

35

Hoover, W. G. Canonical dynamics: Equilibrium phase-space equations. Phys. Rev. A 1985, 31, 1695.

Nano Research
Pages 1680-1688
Cite this article:
Oliveira CK, Gomes EFA, Prado MC, et al. Crystal-oriented wrinkles with origami-type junctions in few-layer hexagonal boron nitride. Nano Research, 2015, 8(5): 1680-1688. https://doi.org/10.1007/s12274-014-0665-y

730

Views

38

Crossref

N/A

Web of Science

37

Scopus

0

CSCD

Altmetrics

Received: 05 September 2014
Revised: 20 November 2014
Accepted: 30 November 2014
Published: 13 February 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return