AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape

Graduate School of Engineering University of Fukui, 3-9-1 BunkyoFukui910-8507Japan
Show Author Information

Graphical Abstract

Abstract

The degradation of Pt nanoparticles (NPs) in fuel cell cathodes leads to the loss of the precious metal catalyst. While the effect of NP size on Pt dissolution has been studied extensively, the influence of NP shape is largely unexplored. Because of the recent development of experimental methods to control the shape of metal NPs, rational guidelines/insights on the shape effects on NP stability are imperative. In this study, first-principles calculations based on density functional theory were conducted to determine the stability of 1–2 nm Pt NPs against Pt dissolution and coalescence with respect to NP shape. Toward dissolution, the stability of the Pt NPs increases in the following order: Hexagonal close-packed < icosahedral < cuboctahedral < truncated octahedral. This trend is attributed to the synergy of the oxygen adsorption strength and the local coordination of the Pt atoms. With respect to coalescence, the size of a NP is related to its propensity to coalesce or detach/migrate to form larger particles. The stability of the Pt NPs was found to increase in the following order: Hexagonal close-packed < truncated octahedral < cuboctahedral < icosahedral, and was correlated with the cohesive energies of the particles. By combining the characteristic stabilities of the shapes, new "metal-interfaced" Pt-based coreshell architectures were proposed that should be more stable than pure Pt nanoparticles with respect to both dissolution and coalescence.

References

1

Lou, J.; Han, L.; Kariuki, N.; Wang, L.; Zhong, C. J.; He, T. Synthesis and characterization of monolayer capped PtVFe nanoparticles with controllable sizes and composition. Chem. Mater. 2005, 17, 5282–5290.

2

Lou, J.; Kariuki, N.; Han, L.; Wang, L.; Zhong, C. J.; He, T. Preparation and characterization of carbon-supported PtVFe electrocatalysts. Electrochim. Acta. 2006, 51, 4821–4827.

3

Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67.

4

Matsumoto, M.; Miyazaki, M. T.; Imai, H. Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J. Phys. Chem. C. 2011, 115, 11163–11169.

5

Ota, K; Koizumi, Y.; Mitsushima, S.; Kamiya, N. Dissolution of platinum in acidic media durability-catalyst activity & stability. ECS Trans. 2006, 3, 619–624.

6

Escaño, M. C. S.; Kasai, H. First-principles study on surface structure, thickness and composition dependence of the stability of Ptskin/Pt3Co oxygen-reduction-reaction catalysts. J. Power Sources 2014, 247, 562–571.

7

Tao, A. R.; Habas, S.; Yang, P. Shape control of colloidal metal nanocrystals. Small 2008, 3, 310–325.

8

Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nanotoday 2009, 4, 143–164.

9

Niu, W.; Xu, G. Crystallographic control of noble metal nanocrystals. Nanotoday 2011, 6, 265–285.

10

Teranishi, T.; Kurita, R.; Miyake, M. Shape control of Pt nanoparticles. J. Inorg. And Organomet. Poly. 2000, 10, 145–156.

11

Long, N. V.; Asaka, T.; Matsubara, T.; Nogami, M. Shape- controlled synthesis of Pt–Pd core–shell nanoparticles exhibiting polyhedral morphologies by modified polyol method. Acta. Mater. 2011, 59, 2901–2907.

12

Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348.

13

Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

14
Si, W.; Li, J.; Li, H.; Li, S.; Yin, J.; Huan, X.; Xinwen, G.; Song, Y. Light-controlled synthesis of uniform platinum nano-dendrites with markedly enhanced electrocatalytic activity. Nano Res. 2013, 6, 720–725.https://doi.org/10.1007/s12274-013-0349-z
15

Devivaraprasad, R.; Ramesh, R.; Naresh, N.; Kar, T.; Singh, R. K.; Neergat, M. Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 2014, 30, 8995–9006.

16

Porter, N. S.; Wu, H.; Quan, Z.; Fang, J. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2012, 46, 1867–1877.

17

Leong, G. J.; Schulze, M. C.; Strand, M. B.; Maloney, D.; Frisco, S. L.; Dinh H. N.; Pivovar, B.; Richards, R. M. Shape-directed platinum nanoparticle synthesis-nanoscale design of novel catalysts. Appl. Organometal. Chem. 2014, 28, 1–17.

18

Gumeci, C.; Marathe, A.; Behrens, R. L.; Chaudhuri, J.; Korzeniewski, C. Solvothermal synthesis and electrochemical characterization of shape-controlled Pt nanocrystals. J. Phys. Chem. C. 2014, 118, 14433–14440.

19

An, W.; Liu, P. Size and shape effects of Pd@Pt core–shell nanoparticles: Unique role of surface contraction and local structural flexibility. J. Phys. Chem. C. 2013, 117, 16144– 16149.

20

Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 2011, 11, 919–926.

21

Qiao, Y.; Li, C. H. Nanostructured catalysts in fuel cell. J. Mater. Chem. 2011, 21, 4027–4036.

22

Noh, S. H.; Seo, M. H.; Seo, J. K.; Fischer, P.; Han. B. First principles computational study on the electrochemical stability of Pt–Co nanocatalysts. Nanoscale 2013, 5, 8625–8633.

23

Seo, J. K.; Khetan, A.; Seo, M. H.; Kim, H.; Han, B. First- principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J. Power Sources 2013, 238, 137–143.

24

Makino, K.; Chiba, M.; Koido, T. Size-dependent activity of platinum nanoparticles for oxygen reduction reaction in a PEFC with a multiscale approach. ECS Trans. 2010, 33, 105–114.

25

Kikuchi, H.; Ouchida, W.; Nakamura, M.; Goto, C.; Yamada, M.; Hoshi, N. Atomic force microscopy of cubic Pt nanoparticles in electrochemical environments. Elechtrochem. Comm. 2010, 12, 544–547.

26

Hohenberg, P.; Kohn, W. Inhomogenous electron gas. Phys. Rev. 1964, 136, B864–B871.

27

Kohn W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

28

Kresse, G.; Furthmüller, J. Non-Fermi-liquid theory of a compactified Anderson single impurity model. Phys. Rev. B 1996, 54, 1169–1186.

29

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

30

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

31

Blochl, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

32

Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B1999, 59, 1758–1775.

33

Larsen, A. H.; Kleis, J.; Thygesen, K. S.; Nørskov, J. K.; Jacobsen, K. W. Electronic shell structure and chemisorption on gold nanoparticles. Phys. Rev. B 2011, 84, 245429.

34

Fajín, J. L. C.; Bruix, A.; Natália, M.; Cordeiro, D. S.; Gomes, J. R. B.; Illas, F. Density functional theory model study of size and structure effects on water dissociation by platinum nanoparticles. J. Chem. Phys. 2012, 137, 034701–034711.

35

Frenkel, A. Solving the 3D structure of metal nanoparticles. Z. Kristallogr. 2007, 222, 605–611.

36

Beale, A. M.; Weckhuysen, B. M. EXAFS as tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. Phys. Chem. Chem. Phys. 2010, 12, 5562–5574.

37

Teter, M. P.; Payne, M. C.; Allan, D. C. Solution of the Schrödinger equation for large systems. Phys. Rev. B 1989, 40, 12255–12263.

38

Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1996.

39

Wang, L.; Roudgar, A.; Eikerling, M. Ab initio study of stability and site-specific oxygen adsorption energies of Pt nanoparticles. J. Phys. Chem. C 2009, 113, 17989–17996.

40

Da Silva, J. L. F; Stampfl, C.; Scheffler, M. Converged properties of clean metal surfaces by all-electron first- principles calculations. Surf. Sci. 2006, 600, 703–715.

41

Darling, R. M.; Meyers, J. P. Kinetic model of platinum dissolution in PEMFC, batteries, fuel cells, and energy conversion. J. Electrochem. Soc. 2003, 150, A1523–A1527.

42

Wachter, A.; Bohnen, K. P.; Ho, K. M. Structure and dynamics at the Pt(100)-surface. Ann. Physik 1996, 6, 215–223.

43

Han, B. C.; Miranda, C. R.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410.

44

Wu, J.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.

45

Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; Disalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalyts. Nat. Mater. 2013, 12, 81–87.

46
Takahashi, H.; Horiuchi, Y.; Nagata, T.; Terada, T.; Tabata, T. Electrode catalyst for fuel cell, method for producing the same, and fuel cell using electrode catalyst. US Pat., 8, 338, 051, December 25, 2012.
47

Okaya, K.; Yano, H.; Kakinuma, K.; Watanabe, M.; Uchida, H. Temperature dependence of oxygen reduction reaction activity at stabilized Ptskin–PtCo alloy/graphitized carbon black catalysts prepared by a modified nanocapsule method. Appl. Mater. Interfaces 2012, 4, 6982–6991.

Nano Research
Pages 1689-1697
Cite this article:
Escaño MCS. First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape. Nano Research, 2015, 8(5): 1689-1697. https://doi.org/10.1007/s12274-014-0670-1

608

Views

38

Crossref

N/A

Web of Science

39

Scopus

6

CSCD

Altmetrics

Received: 17 September 2014
Revised: 15 November 2014
Accepted: 30 November 2014
Published: 11 February 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return