AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting

Qing HanFei ZhaoChuangang HuLingxiao LvZhipan Zhang( )Nan ChenLiangti Qu( )
Key Laboratory of Cluster ScienceMinistry of Education of ChinaBeijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsSchool of ChemistryBeijing Institute of TechnologyBeijing100081China
Show Author Information

Graphical Abstract

Abstract

Ultrathin graphitic carbon nitride nanoplatelets (UGCNPs) are synthesized by a facile manner via an efficient and eco-friendly ball milling approach. The obtained UGCNPs are 2–6 nm in size and 0.35–0.7 nm in thickness, with improved specific surface area over that of bulk graphitic carbon nitride. Photochemical experiments show that the UGCNPs are highly active in visible-light water splitting, with a hydrogen evolution rate of 1, 365 μmol·h-1·g-1, which is 13.7-fold greater than that of their bulk counterparts. The notable improvement in the hydrogen evolution rate observed with UGCNPs under visible light is due to the synergistic effects derived from the increased specific surface area, reduced thickness, and a negative shift in the conduction band concomitant with the exfoliation of bulk graphitic carbon nitride into UGCNPs. In addition to metal-free visible-light-driven photocatalytic hydrogen production, the UGCNPs find attractive applications in biomedical imaging and optoelectronics because of their superior luminescence characteristics.

Electronic Supplementary Material

Download File(s)
12274_2014_675_MOESM1_ESM.pdf (1.3 MB)

References

1

Kim, Y. I.; Salim, S.; Huq, M. J.; Mallouk, T. E. Visible- light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc. 1991, 113, 9561–9563.

2

Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995, 95, 69–96.

3

Grä tzel, M. Photoelectrochemical cells. Nature. 2001, 414, 338–344.

4

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Ioune, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature. 2006, 440, 295.

5

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010, 110, 6503–6570.

6

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science. 2004, 306, 666–669.

7

Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Costa, V. D.; Speisser, V.; Boeglin, C.; Houllé, M.; Bégin, D.; et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano. Res. 2010, 3, 126–137.

8

Zhou, H. Q.; Zhu, J. X.; Liu, Z.; Yan, Z.; Fan, X. J.; Lin, J.; Wang, G.; Yan, Q. Y.; Yu, T.; Ajayan, P.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano. Res. 2014, 7, 1232–1240.

9

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identigication of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007, 317, 100–102.

10

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011, 331, 568–571.

11

Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng. Y.; Zhang, H. L. A mixed-solvent strategyfor efficient exfoliation of inorganic graphene analogues. Angew. Chem. Int. Ed. 2011, 50, 10839–10842.

12

Zhou, M.; Lou, X. W. (David); Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today. 2013, 8, 598–618.

13

Wang, W. W.; Zhu, Y. J.; Yang, L. X. ZnO-SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties Adv. Funct. Mater. 2007, 17, 59–64.

14

Xu, T. G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y. F. Monomolecular-layer Ba5Ta4O15 nanosheets: Synthesis and investigation of photocatalytic properties. Adv. Funct. Mater. 2006, 16, 1599–1607.

15

Kim, J. Y.; Hiramatsu, H.; Osterloh, F. E. Planar polarized light emission from CdSe nanoparticle clusters. J. Am. Chem. Soc. 2005, 127, 15556–15561.

16

Kim, J. Y.; Osterloh, F. E. Planar gold nanoparticle clusters as microscale mirrors. J. Am. Chem. Soc. 2006, 128, 3868–3869.

17

Zhang, C.; Zhu, Y. F. Synthesis of square Bi2WO6nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 2005, 17, 3537–3545.

18

Lu, H. B.; Wang, S. M.; Zhao, L.; Li, J. C.; Dong, B. H.; Xu, Z. X. Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J. Mater. Chem. 2011, 21, 4228–4234.

19

Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for biomaging. J. Am. Chem. Soc. 2013, 135, 18–21.

20

Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.

21

Liu, G.; Wang, L. Z.; Sun, C. H.; Chen, Z. G.; Yan, X. X.; Cheng, L. N.; Cheng, H. M.; Lu, G. Q. Nitrogen-doped titania nanosheets towards visible light response. Chem. Comm. 2009, 1383–1385.

22

Qi, L. M.; Colfen, H.; Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double- hydrophilic block copolymers. Nano. Lett. 2001, 1, 61–65.

23

Reber, J. F.; Rusek, M. Photochemical Hydrogen-Production with Platinized Suspensions of Cadmium-Sulfide and Cadmium Zinc-Sulfide Modified by Silver Sulfide. J. Phys. Chem. 1986, 90, 824–824.

24

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2008, 8, 76–80.

25

Wang, X. C.; Maeda, K.; Chen, X. F.; Takanabe, K.; Domen, K.; Hou, Y. D.; Fu, X. Z.; Antonietti, M. Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporousgraphitic carbon nitride with visible light. J. Am. Chem. Soc. 2009, 131, 1680–1681.

26

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Edit. 2012, 51, 68–89.

27

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalyticactivities. Adv. Funct. Mater. 2012, 22, 4763–4770.

28

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

29

Chang, D. W.; Lee, E. K.; Park, E. Y.; Yu, H.; Choi, H. J.; Jeon, I. Y.; Sohn, G. J.; Shin, D.; Park, N.; Oh, J. H.; Dai, L. M.; Baek, J. B. Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. J. Am. Chem. Soc. 2013, 135, 8981–8988.

30

Chang, D. W.; Choi, H. J.; Jeon, I. Y.; Baek, J. B. Edge- selectively functionalized graphene nanoplatelets. Chem. Rec. 2013, 13, 224–238.

31

Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge- selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

32

Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.

33

Lotsch, B. V.; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations— structural characterization of a carbon nitride polymer. Chem. Eur. J. 2007, 13, 4969–4980.

34

Jun, Y. S.; Hong, W. H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater. 2009, 21, 4270–4274.

35

Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.

36

Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Edit. 2014, 53, 9240–9245.

37

Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.

38

Li, J.; Shen, B.; Hong, Z.; Lin, B.; Gao, B.; Chen, Y. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

39

Cui, Y. J.; Ding, Z. X; Fu, X. Z; Wang, X. C. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 11814–11818.

40

Peng, Q.; Park, K; Lin, T.; Durstock, M.; Dai, L. Donor- π-acceptor conjugated copolymers for photovoltaic applications:  Tuning the open-circuit voltage by adjusting the donor/acceptor ratio. J. Phys. Chem. B. 2008, 112, 2801–2808.

41

Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. S. Nitrogen- doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 2014, 26, 3297–3303.

42

Zhang, J. S.; Chen, X. F.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Edit. 2010, 49, 441–444.

43

Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091.

44

Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

45

Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805–809.

Nano Research
Pages 1718-1728
Cite this article:
Han Q, Zhao F, Hu C, et al. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Research, 2015, 8(5): 1718-1728. https://doi.org/10.1007/s12274-014-0675-9

742

Views

159

Crossref

N/A

Web of Science

162

Scopus

20

CSCD

Altmetrics

Received: 10 September 2014
Revised: 27 November 2014
Accepted: 01 December 2014
Published: 04 February 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return