Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional layered IV–VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable synthesis of high-quality IV–VI chalcogenide nanostructures have hindered their in-depth studies and practical applications to date. Here we report, for the first time, a feasible synthesis of single-crystal IV–VI SnSe nanoplates in a controlled manner on mica substrates by vapor transport deposition. The as-grown SnSe nanoplates have approximately square shapes with controllable side lengths varying from 1 to 6 μm. Electrical transport and optoelectronic measurements show that as-obtained SnSe nanoplates display p-type conductivity and high photoresponsivity.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Edit. 2010, 49, 4059–4062.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech 2011, 6, 147–150.
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.
Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 2009, 462, 196–199.
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech 2010, 5, 722–726.
Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.
Kong, D. S.; Randel, J. C.; Peng, H. L.; Cha, J. J.; Meister, S.; Lai, K. J.; Chen, Y. L.; Shen, Z. X.; Manoharan, H. C.; Cui, Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2010, 10, 329–333.
Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Aharonov– Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.
Chun, D.; Walser, R. M.; Bene, R. W.; Courtney, T. H. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 1974, 24, 479–481.
Agarwal, A.; Vashi, M. N.; Lakshminarayana, D.; Batra, N. M. Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci-Mater. El. 2000, 11, 67–71.
Boscher, N. D.; Carmalt, C. J.; Palgrave, R. G.; Parkin, I. P. Atmospheric pressure chemical vapor deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 2008, 516, 4750–4757.
Sumesh, C. K.; Patel, M.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Srivastav, R. Low temperature electrical transport properties in p-SnSe single crystals. Eur. Phys. J-Appl. Phys. 2011, 53, 10302.
Xue, M. Z.; Yao, J.; Cheng, S. C.; Fu, Z. W. Lithium electrochemistry of a novel SnSe thin-film anode. J. Electrochem. Soc. 2006, 153, A270–A274.
Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.
Baumgardner, W. J.; Choi, J. J.; Lim, Y. F.; Hanrath, T. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 2010, 132, 9519–9521.
Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4062.
Liu, S.; Guo, X. Y.; Li, M. R.; Zhang, W. H.; Liu, X. Y.; Li, C. Solution-phase synthesis and characterization of single- crystalline SnSe nanowires. Angew. Chem. Int. Edit. 2011, 50, 12050–12053.
Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.
Car, R.; Ciucci, G.; Quartapelle, L. Electronic Band- Structure of SnSe. Phys. Status. Solidi. B. 1978, 86, 471–478.
Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline snse nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.
Vaughn, D. D.; In, S. I.; Schaak, R. E. A Precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS nano 2011, 5, 8852–8860.
Tritsaris, G. A.; Malone, B. D.; Kaxiras, E. Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study. J. Appl. Phys. 2013, 113, 233507.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotech 2012, 7, 699-712.
Antunez, P. D.; Buckley, J. J.; Brutchey, R. L. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399-2411.
Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.
Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.
Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, W.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.
Colin, R.; J. Drowart, J. Thermodynamic study of tin selenide and tin telluride using a mass spectrometer. J. Trans. Faraday Soc. 1964, 60, 673–683.
Vaughn, D. D.; Patel, R. J.; Hickner, M. A.; Schaak, R. E. Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132, 15170–15172.
Yoon, S. M.; Song, H. J.; Choi, H. C. p-Type Semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process. Adv. Mater. 2010, 22, 2164–2167.
Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.
Chandrasekhar, H. R.; Humphreys, R. G.; Zwick, U.; Cardona, M. Infrared and Raman spectra ofthe IV–VI compounds SnS and SnSe. Phys. Rev. B 1977, 15, 2177–2183.
Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.
Maier, H.; Daniel, D. R. SnSe single-crystals-sublimation growth, deviation from stoichiometry and electrical-properties. J. Electron. Mater. 1977, 6, 693–704.