AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controlled synthesis of single-crystal SnSe nanoplates

Shuli Zhao1,2Huan Wang1Yu Zhou1,2Lei Liao1Ying Jiang3Xiao Yang1Guanchu Chen1Min Lin1Yong Wang3Hailin Peng1,2( )Zhongfan Liu1,2( )
Center for NanochemistryBeijing National Laboratory for Molecular Sciences (BNLMS)College of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
Center of Electron Microscopy and State Key Laboratory of Silicon MaterialsDepartment of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional layered IV–VI chalcogenides are attracting great interest for applications in next-generation optoelectronic, photovoltaic, and thermoelectric devices. However, great challenges in the controllable synthesis of high-quality IV–VI chalcogenide nanostructures have hindered their in-depth studies and practical applications to date. Here we report, for the first time, a feasible synthesis of single-crystal IV–VI SnSe nanoplates in a controlled manner on mica substrates by vapor transport deposition. The as-grown SnSe nanoplates have approximately square shapes with controllable side lengths varying from 1 to 6 μm. Electrical transport and optoelectronic measurements show that as-obtained SnSe nanoplates display p-type conductivity and high photoresponsivity.

Electronic Supplementary Material

Download File(s)
12274_2014_676_MOESM1_ESM.pdf (1 MB)

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

3

Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

4

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

5

Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Edit. 2010, 49, 4059–4062.

6

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech 2011, 6, 147–150.

7

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

8

Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 2009, 462, 196–199.

9

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech 2010, 5, 722–726.

10

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

11

Kong, D. S.; Randel, J. C.; Peng, H. L.; Cha, J. J.; Meister, S.; Lai, K. J.; Chen, Y. L.; Shen, Z. X.; Manoharan, H. C.; Cui, Y. Topological insulator nanowires and nanoribbons. Nano Lett. 2010, 10, 329–333.

12

Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X. L.; Zhang, S. C.; Shen, Z. X.; Cui, Y. Aharonov– Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225–229.

13

Chun, D.; Walser, R. M.; Bene, R. W.; Courtney, T. H. Polarity-dependent memory switching in devices with SnSe and SnSe2 crystals. Appl. Phys. Lett. 1974, 24, 479–481.

14

Agarwal, A.; Vashi, M. N.; Lakshminarayana, D.; Batra, N. M. Electrical resistivity anisotropy in layered p-SnSe single crystals. J. Mater. Sci-Mater. El. 2000, 11, 67–71.

15

Boscher, N. D.; Carmalt, C. J.; Palgrave, R. G.; Parkin, I. P. Atmospheric pressure chemical vapor deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 2008, 516, 4750–4757.

16

Sumesh, C. K.; Patel, M.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Srivastav, R. Low temperature electrical transport properties in p-SnSe single crystals. Eur. Phys. J-Appl. Phys. 2011, 53, 10302.

17

Xue, M. Z.; Yao, J.; Cheng, S. C.; Fu, Z. W. Lithium electrochemistry of a novel SnSe thin-film anode. J. Electrochem. Soc. 2006, 153, A270–A274.

18

Lefebvre, I.; Szymanski, M. A.; Olivier-Fourcade, J.; Jumas, J. C. Electronic structure of tin monochalcogenides from SnO to SnTe. Phys. Rev. B 1998, 58, 1896–1906.

19

Baumgardner, W. J.; Choi, J. J.; Lim, Y. F.; Hanrath, T. SnSe nanocrystals: Synthesis, structure, optical properties, and surface chemistry. J. Am. Chem. Soc. 2010, 132, 9519–9521.

20

Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4062.

21

Liu, S.; Guo, X. Y.; Li, M. R.; Zhang, W. H.; Liu, X. Y.; Li, C. Solution-phase synthesis and characterization of single- crystalline SnSe nanowires. Angew. Chem. Int. Edit. 2011, 50, 12050–12053.

22

Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

23

Car, R.; Ciucci, G.; Quartapelle, L. Electronic Band- Structure of SnSe. Phys. Status. Solidi. B. 1978, 86, 471–478.

24

Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline snse nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.

25

Vaughn, D. D.; In, S. I.; Schaak, R. E. A Precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: The case of SnSe. ACS nano 2011, 5, 8852–8860.

26

Tritsaris, G. A.; Malone, B. D.; Kaxiras, E. Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study. J. Appl. Phys. 2013, 113, 233507.

27

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotech 2012, 7, 699-712.

28

Antunez, P. D.; Buckley, J. J.; Brutchey, R. L. Tin and germanium monochalcogenide IV–VI semiconductor nanocrystals for use in solar cells. Nanoscale 2011, 3, 2399-2411.

29

Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

30

Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

31

Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, W.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

32

Colin, R.; J. Drowart, J. Thermodynamic study of tin selenide and tin telluride using a mass spectrometer. J. Trans. Faraday Soc. 1964, 60, 673–683.

33

Vaughn, D. D.; Patel, R. J.; Hickner, M. A.; Schaak, R. E. Single-crystal colloidal nanosheets of GeS and GeSe. J. Am. Chem. Soc. 2010, 132, 15170–15172.

34

Yoon, S. M.; Song, H. J.; Choi, H. C. p-Type Semiconducting GeSe combs by a vaporization-condensation-recrystallization (VCR) process. Adv. Mater. 2010, 22, 2164–2167.

35

Xue, D. J.; Tan, J. H.; Hu, J. S.; Hu, W. P.; Guo, Y. G.; Wan, L. J. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528–4533.

36

Chandrasekhar, H. R.; Humphreys, R. G.; Zwick, U.; Cardona, M. Infrared and Raman spectra ofthe IV–VI compounds SnS and SnSe. Phys. Rev. B 1977, 15, 2177–2183.

37

Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 2007, 101, 014507.

38

Maier, H.; Daniel, D. R. SnSe single-crystals-sublimation growth, deviation from stoichiometry and electrical-properties. J. Electron. Mater. 1977, 6, 693–704.

Nano Research
Pages 288-295
Cite this article:
Zhao S, Wang H, Zhou Y, et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Research, 2015, 8(1): 288-295. https://doi.org/10.1007/s12274-014-0676-8
Part of a topical collection:

820

Views

220

Crossref

N/A

Web of Science

222

Scopus

9

CSCD

Altmetrics

Received: 10 September 2014
Revised: 30 November 2014
Accepted: 02 December 2014
Published: 21 January 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return