AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution

Haotian Wang1,§Charlie Tsai2,3,§Desheng Kong4Karen Chan2,3Frank Abild-Pedersen3Jens K. Nørskov2,3( )Yi Cui4,5( )
Department of Applied PhysicsStanford UniversityStanfordCA93205USA
Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator Laboratory2575 Sand Hill RoadMenlo ParkCA94025USA
Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
Stanford Institute for Materials and Energy SciencesSLAC National Accelerator Laboratory2575 Sand Hill RoadMenlo ParkCA94025USA

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Highly active and low-cost catalysts for electrochemical reactions such as the hydrogen evolution reaction (HER) are crucial for the development of efficient energy conversion and storage technologies. Theoretical simulations have been instrumental in revealing the correlations between the electronic structure of materials and their catalytic activity, and guide the prediction and development of improved catalysts. However, difficulties in accurately engineering the desired atomic sites lead to challenges in making direct comparisons between experimental and theoretical results. In MoS2, the Mo-edge has been demonstrated to be active for HER whereas the S-edge is inert. Using a computational descriptor-based approach, we predict that by incorporating transition metal atoms (Fe, Co, Ni, or Cu) the S-edge site should also become HER active. Vertically standing, edge-terminated MoS2 nanofilms provide a well-defined model system for verifying these predictions. The transition metal doped MoS2 nanofilms show an increase in exchange current densities by at least two-fold, in agreement with the theoretical calculations. This work opens up further opportunities for improving electrochemical catalysts by incorporating promoters into particular atomic sites, and for using well-defined systems in order to understand the origin of the promotion effects.

Electronic Supplementary Material

Download File(s)
12274_2014_677_MOESM1_ESM.pdf (1.6 MB)

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

2

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103, 15729-15735.

3

Hinnemann, B.; Moses, P. G.; Bonde, J. L.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.

4

Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.

5

Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. American Chem. Soc. 2011, 133, 7296-7299.

6

Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. American Chem. Soc. 2008, 130, 7176-7177.

7

Prins, R.; De Beer, V. H. J.; Somorjai, G. A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts. Catal. Rev. 1989, 31, 1-41.

8

Coulier, L.; de Beer, V. H. J.; van Veen, J. A. R.; Niemantsverdriet, J. W. On the formation of cobalt-molybdenum sulfides in silica-supported hydrotreating model catalysts. Topics in Catal. 2000, 13, 99-108.

9

Jaramillo, T. F.; Bonde, J.; Zhang, J.; Ooi, B. -L.; Andersson, K.; Ulstrup, J.; Chorkendorff, I. Hydrogen evolution on supported incomplete cubane-type[Mo3S4]4+ electrocatalysts. J. Phys. Chem. C 2008, 112, 17492-17498.

10

Karunadasa, H. I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J. R.; Chang, C. J. A Molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698-702.

11

Vrubel, H.; Merki, D.; Hu, X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy & Environ. Sci. 2012, 5, 6136-6144.

12

Laursen, A. B.; Kegnaes, S.; Dahl, S.; Chorkendorff, I. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy & Environ. Sci. 2012, 5, 5577-5591.

13

Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2008, 140, 219.

14

Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three- dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940-4947.

15

Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect-Rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807-5813.

16

Lu, Z.; Zhang, H.; Zhu, W.; Yu, X.; Kuang, Y.; Chang, Z.; Lei, X.; Sun, X. In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Commun. 2013, 49, 7516-7518.

17

Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 2012, 11, 963-969.

18

Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168-4175.

19

Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. l Sci. 2011, 2, 1262- 1267.

20

Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catalysis 2012, 2, 1916-1923.

21

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science 3, 2515-2525.

22

Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341-1347.

23

Wang, H.; Lu, Z.; Xu, S.; Kong, D.; Cha, J. J.; Zheng, G.; Hsu, P. -C.; Yan, K.; Bradshaw, D.; Prinz, F. B.; Cui, Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Nat. Acad. Sci. 2013, 110, 19701-19706.

24

Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426-3433.

25

Wang, H.; Zhang, Q.; Yao, H.; Liang, Z.; Lee, H. -W.; Hsu, P. -C.; Zheng, G.; Cui, Y. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett. 2014, 10.1021/nl503730c.

26

Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 Edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381-1387.

27

Lauritsen, J. V.; Kibsgaard, J.; Olesen, G. H.; Moses, P. G.; Hinnemann, B.; Helveg, S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Lægsgaard, E. Location and coordination of promoter atoms in Co-and Ni-promoted MoS2-based hydrotreating catalysts. J. Catal. 2007, 249, 220-233.

28

Bouwens, S. M. A. M.; Vanzon, F. B. M.; Vandijk, M. P.; Vanderkraan, A. M.; Debeer, V. H. J.; Vanveen, J. A. R.; Koningsberger, D. C. On the structural differences between alumina-supported comos type I and alumina-, silica-, and carbon-supported comos type Ⅱ phases studied by XAFS, MES, and XPS. J. Catal. 1994, 146, 375-393.

29

Byskov, L. S.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H. DFT Calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J. Catal. 1999, 187, 109-122.

30

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515-2525.

31

Nørskov, J. K.; Bligaard, T.; Logadóttir, Á.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. In J. Electrochem. Soc. , 2005; pp J23-J26.

32

Kibsgaard, J.; Tuxen, A.; Knudsen, K. G.; Brorson, M.; Topsøe, H.; Lægsgaard, E.; Lauritsen, J. V.; Besenbacher, F. Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts. J. Catal. 2010, 272, 195-203.

33

Schweiger, P. R. H. Hervé toulhoat promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions. J. Catal. 2002, 212, 33-38.

34

Tsai, C.; Chan, K.; Abild-Pedersen, F.; Norskov, J. K. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 13156-13164.

35

Patterson, T. A.; Carver, J. C.; Leyden, D. E.; Hercules, D. M. A surface study of cobalt-molybdena-alumina catalysts using X-ray photoelectron spectroscopy. J. Phys. Chem. 1976, 80, 1700-1708.

36

Muijsers, J. C.; Weber, T.; Vanhardeveld, R. M.; Zandbergen, H. W.; Niemantsverdriet, J. W. Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo-IV3-sulfur cluster compounds. J. Catal. 1995, 157, 698-705.

37

Stacy, A. M.; Hodul, D. T. Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solid. 1985, 46, 405-409.

38

Wieting, T. J.; Verble, J. L. Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS_{2}. Phys. Rev. B 1971, 3, 4286-4292.

39

Castellanos-Gomez, A.; van der Zant, H. J.; Steele, G. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 1-7.

40

Zhou, H.; Yu, F.; Liu, Y.; Zou, X.; Cong, C.; Qiu, C.; Yu, T.; Yan, Z.; Shen, X.; Sun, L.; Yakobson, B.; Tour, J. Thickness-dependent patterning of MoS2 sheets with well- oriented triangular pits by heating in air. Nano Res. 2013, 6, 703-711.

41

Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Koon, G.; Zhao, W.; Castro Neto, A. H.; Eda, G.; Shen, C.; Özyilmaz, B. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Res. 2013, 6, 200-207.

Nano Research
Pages 566-575
Cite this article:
Wang H, Tsai C, Kong D, et al. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research, 2015, 8(2): 566-575. https://doi.org/10.1007/s12274-014-0677-7
Part of a topical collection:

1082

Views

610

Crossref

N/A

Web of Science

599

Scopus

25

CSCD

Altmetrics

Received: 06 October 2014
Revised: 30 November 2014
Accepted: 02 December 2014
Published: 27 January 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return