AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method

Shiting Wu1Enzheng Shi1Yanbing Yang2Wenjing Xu1Xinyang Li2Anyuan Cao1( )
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
Show Author Information

Graphical Abstract

Abstract

Hybridization of carbon nanotubes (CNT) with graphene provides a promising means of integrating the attributes of both materials, thereby enabling widespread application. Here, we present a method to directly assemble hybrid CNT-graphene films by a blown bubble method combined with selective substrate annealing. We use polymethylmethacrylate (PMMA) as the polymeric matrix to blow bubbles containing self-assembled multi-walled CNT arrays, and then transform the bubble film into a CNT-graphene hybrid film by thermal annealing on a Cu substrate; PMMA serves as the carbon source for growing single to few-layer graphene among the CNT network until a continuously hybridized structure is formed. Compared to the bare (non-hybridized) CNT networks, the hybrid films exhibit improved electrical conductivity and structural integrity. Our method also enables the fabrication of a multi-walled CNT-Si solar cell, which has high power conversion efficiency, through the assembly of hybrid CNT-graphene structures.

Electronic Supplementary Material

Download File(s)
12274_2014_679_MOESM1_ESM.pdf (1.4 MB)

References

1

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

2

Zhang, Q.; Wan, X. J.; Xing, F.; Huang, L.; Long, G. K.; Yi, N. B.; Ni, W.; Liu, Z. B.; Yian, J. G.; Chen, Y. S. Solution- processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

3

Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3, 4-ethylenedioxythiophene): poly (4- styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730.

4

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

5

Feng, C.; Liu, K.; Wu, J. -S.; Liu, L.; Cheng, J. -S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

6

Long, D. P.; Lazorcik, J. L.; Shashidhar, R. Magnetically directed self-assembly of carbon nanotube devices. Adv. Mater. 2004, 16, 814–819.

7

Shekhar, S.; Stokes, P.; Khondaker, S. I. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 2011, 5, 1739–1746.

8

Shaver, J.; Parra-Vasquez, A. N. G.; Hansel, S.; Portugall, O.; Mielke, C. H.; von Ortenberg, M.; Hauge, R. H.; Pasquali, M.; Kono, J. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields. ACS Nano 2009, 3, 131–138.

9

Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. -S.; Dai, H. J. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890–4891.

10

Giancane, G.; Ruland, A.; Sgobba, V.; Manno, D.; Serra, A.; Farinola, G. M.; Omar, O. H.; Guldi, D. M.; Valli, L. Aligning single-walled carbon nanotubes by means of Langmuir-Blodgett film deposition: Optical, morphological, and photo-electrochemical studies. Adv. Funct. Mater. 2010, 20, 2481–2488.

11

Choi, S. -W.; Kang, W. -S.; Lee, J. -H.; Najeeb, C. K.; Chun, H. -S.; Kim, J. -H. Patterning of hierarchically aligned single-walled carbon nanotube Langmuir-Blodgett films by microcontact printing. Langmuir 2010, 26, 15680–15685.

12

Shim, B. S.; Kotov, N. A. Single-walled carbon nanotube combing during layer-by-layer assembly: From random adsorption to aligned composites. Langmuir 2005, 21, 9381–9385.

13

Liu, H. P.; Takagi, D.; Chiashi, S.; Homma, Y. Transfer and alignment of random single-walled carbon nanotube films by contact printing. ACS Nano 2010, 4, 933–938.

14

Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman. R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.

15

Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S. L.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M. et al. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009, 323, 1575–1578.

16

Feng, C.; Liu, K.; Wu, J. -S.; Liu, L.; Cheng, J. -S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang. K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.

17

Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. -Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539–4545.

18

Wei, Y.; Liu, L.; Liu, P.; Xiao, L.; Jiang, K. L.; Fan. S. S. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications. Nanotechnology2008, 19, 475707.

19

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov. A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

20

Kim, S. H.; Song, W.; Jung, M. W.; Kang, M. -A.; Kim, K.; Chang, S. -J.; Lee, S. S.; Lim, J. J.; Hwang, J. H.; Myung, S. et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv. Mater. 2014, 26, 4247–4252.

21

Yan, Z.; Peng, Z. W.; Casillas, G.; Lin, J.; Xiang, C. S.; Zhou, H. Q.; Yang, Y.; Ruan, G. D.; Raji, A. -R. O.; Samuel, E. L. G. et al. Rebar graphene. ACS Nano 2014, 8, 5061–5068.

22

Lin, X. Y.; Liu, P.; Wei, Y.; Li, Q. Q.; Wang, J. P.; Wu, Y.; Feng, C.; Zhang, L. N.; Fan, S. S.; Jiang. K. L. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920.

23

Yu, G. H.; Cao, A. Y.; Lieber. C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2008, 2, 372–377.

24

Yu, G. H.; Li, X. L.; Lieber, C. M.; Cao. A. Y. Nanomaterial- incorporated blown bubble films for large-area, aligned nanostructures. J. Mater. Chem. 2008, 18, 728–734.

25

Wu, S. T.; Huang, K.; Shi, E. Z.; Xu, W. J.; Fang, Y.; Yang, Y. B.; Cao. A. Y. Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control. ACS Nano 2014, 8, 3522–3530.

26

Chae, S. J.; Günes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. -J.; Yoon, S. -M.; Choi, J. -Y.; Park, M. H. et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

27

Li, X. S.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B. Y.; Borysiak, M.; Cai, W. W.; Velamakanni, A.; Zhu, Y. W. et al. Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 2010, 10, 4328–4334.

28

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large- area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

29

Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour. J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.

30

Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905.

31

Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q. et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776–1781.

32

Shi, E. Z.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Zhang, S.; Cao. A. Y. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2012, 2, 884.

33

Du, A. J.; Ng, Y. H.; Bell, N. J.; Zhu, Z. H.; Amal, R.; Smith, S. C. Hybrid graphene/titania nanocomposite: Interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2011, 2, 894–899.

Nano Research
Pages 1746-1754
Cite this article:
Wu S, Shi E, Yang Y, et al. Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method. Nano Research, 2015, 8(5): 1746-1754. https://doi.org/10.1007/s12274-014-0679-5

588

Views

21

Crossref

N/A

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 02 November 2014
Revised: 01 December 2014
Accepted: 01 December 2014
Published: 27 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return