AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Towards active plasmonic response devices

Yinghui Sun1,3Lin Jiang2( )Liubiao Zhong2Yueyue Jiang3Xiaodong Chen3( )
College of PhysicsOptoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215006China
Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouJiangsu215123China
School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
Show Author Information

Graphical Abstract

Abstract

Given the interdisciplinary challenges in materials sciences, chemistry, physics, and biology, as well as the demands to merge electronics and photonics at the nanometer scale for miniaturized integrated circuits, plasmonics serves as a bridge by breaking the limit in the speed of nanoscale electronics and the size of terahertz dielectric photonics. Active plasmonic systems enabling active control over the plasmonic properties in real time have opened up a wealth of potential applications. This review focuses on the development of active plasmonic response devices. Significant advances have been achieved in control over the dielectric properties of the active surrounding medium, including liquid crystals, polymers, photochromic molecules and inorganic materials, which in turn allows tuning of the reversible plasmon resonance switch of neighboring metal nanostructures.

References

1

Brongersma, M. L.; Shalaev, V. M. The case for plasmonics. Science 2010, 328, 440-441.

2

Zia, R.; Schuller, J. A.; Chandran, A.; Brongersma, M. L. Plasmonics: The next chip-scale technology. Mater. Today 2006, 9, 20-27.

3

Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189-193.

4

Odom, T. W.; Schatz, G. C. Introduction to plasmonics. Chem. Rev. 2011, 111, 3667-3668.

5

Jiang, L.; Zhang, H. X.; Zhuang, J. Q.; Yang, B. Q.; Yang, W. S.; Li, T. J.; Sun, C. C. Sterically mediated two-dimensional architectures in aggregates of Au nanoparticles directed by phosphorothioate oligonucleotide-DNA. Adv. Mater. 2005, 17, 2066-2070.

6
Lacroix, J. C.; Martin, P.; Randriamahazaka, H. Active Nanoantenna System. In Encyclopedia of Nanotechnology. Bhushan, B., Ed.; Springer: Berlin, 2012; pp 56-69.https://doi.org/10.1007/978-90-481-9751-4_100013
7

Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. R.; Zou, S. L. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 2005, 30, 368-375.

8

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828-3857.

9

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494-521.

10

Liu, Y.; Yin, J. -J.; Nie, Z. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719-1730.

11

Jiang, L.; Zou, C. J.; Zhang, D. H.; Sun, Y. H.; Jiang, Y. Y.; Leow, W. R.; Liedberg, B.; Li, S. Z.; Chen, X. D. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small 2013, 10, 609-614.

12

Li, L.; Steiner, U.; Mahajan, S. Single Nanoparticle SERS probes of ion intercalation in metal-oxide electrodes. Nano Lett. 2014, 14, 495-498.

13

Wu, H.; Wang, P.; He, H.; Jin, Y. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135-144.

14

Zhu, K.; Wang, D.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1-29.

15

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 865-865.

16

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205-213.

17

Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685-1706.

18

Berthelot, J.; Bouhelier, A.; Huang, C.; Margueritat, J.; Colas-des-Francs, G.; Finot, E.; Weeber, J. C.; Dereux, A.; Kostcheev, S.; Ahrach, H. I. E.; et al. Tuning of an optical dimer nanoantenna by electrically controlling its load impedance. Nano Lett. 2009, 9, 3914-3921.

19

Liu, N.; Wen, F.; Zhao, Y.; Wang, Y.; Nordlander, P.; Halas, N. J.; Alù, A. Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 2012, 13, 142-147.

20

Xie, F.; Pang, J.; Centeno, A.; Ryan, M.; Riley, D. J.; Alford, N. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 2013, 6, 496-510.

21

Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607-616.

22

Zheng, Y. B.; Kiraly, B.; Cheunkar, S.; Huang, T. J.; Weiss, P. S. Incident-angle-modulated molecular plasmonic switches: A case of weak exciton-plasmon coupling. Nano. Lett. 2011, 11, 2061-2065.

23

Zheng, Y. B.; Yang, Y. W.; Jensen, L.; Fang, L.; Juluri, B. K.; Flood, A. H.; Weiss, P. S.; Stoddart, J. F.; Huang, T. J. Active molecular plasmonics: Controlling plasmon resonances with molecular switches. Nano Lett. 2009, 9, 819-825.

24

Pacifici, D.; Lezec, H. J.; Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics 2007, 1, 402-406.

25

Leroux, Y.; Lacroix, J. C.; Fave, C.; Stockhausen, V.; Félidj, N.; Grand, J.; Hohenau, A.; Krenn, J. R. Active plasmonic devices with anisotropic optical response: A step toward active polarizer. Nano Lett. 2009, 9, 2144-2148.

26

Khatua, S.; Chang, W. S.; Swanglap, P.; Olson, J.; Link, S. Active modulation of nanorod plasmons. Nano Lett. 2011, 11, 3797-3802.

27

Jiang, L.; Sun, Y. H.; Huo, F. W.; Zhang, H.; Qin, L. D.; Li, S. Z.; Chen, X. D. Free-standing one-dimensional plasmonic nanostructures. Nanoscale 2012, 4, 66-75.

28

Jiang, L.; Sun, Y.; Nowak, C.; Kibrom, A.; Zou, C.; Ma, J.; Fuchs, H.; Li, S.; Chi, L.; Chen, X. Patterning of plasmonic nanoparticles into multiplexed one-dimensional arrays based on spatially modulated electrostatic potential. ACS Nano 2011, 5, 8288-8294.

29

Hafner, J. H.; Nordlander, P.; Weiss, P. S. Virtual issue on plasmonics. ACS Nano 2011, 5, 4245-4248.

30

Halas, N. J. Plasmonics: An emerging field fostered by nano letters. Nano Lett. 2010, 10, 3816-3822.

31

Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913-3961.

32

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.

33

Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806-3819.

34

Moores, A.; Goettmann, F. The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 2006, 30, 1121-1132.

35

Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220-19225.

36

Link, S.; El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409-453.

37

Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.

38

Zhu, X.; Shi, L.; Liu, X.; Zi, J.; Wang, Z. A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate. Nano Res. 2010, 3, 807-812.

39

Jiang, L.; Tang, Y. X.; Liow, C. H.; Wu, J. S.; Sun, Y. H.; Jiang, Y. Y.; Dong, Z. L.; Li, S. Z.; Dravid, V. P.; Chen, X. D. Synthesis of fivefold stellate polyhedral gold nanoparticles with {110}-facets via a seed-mediated growth method. Small 2013, 9, 705-710.

40

Jiang, L.; Wang, W. C.; Fuchs, H.; Chi, L. F. One- dimensional arrangement of gold nanoparticles with tunable interparticle distance. Small 2009, 5, 2819-2822.

41

Xu, G.; Tazawa, M.; Jin, P.; Nakao, S.; Yoshimura, K. Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films. Appl. Phys. Lett. 2003, 82, 3811-3813.

42
Erdem, T.; Soran-Erdem, Z.; Hernandez-Martinez, P.; Sharma, V.; Akcali, H.; Akcali, I.; Gaponik, N.; Eychmüller, A.; Demir, H. Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Res. 2014, in press, DOI: 10.1007/s12274-014-0568-y.https://doi.org/10.1007/s12274-014-0568-y
43

Si, G.; Zhao, Y.; Leong, E. S. P.; Liu, Y. J. Liquid-crystal- enabled active plasmonics: A review. Materials 2014, 7, 1296-1317.

44

Tokarev, I.; Minko, S. Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers. Soft Matter 2012, 8, 5980-5987.

45

Suh, J. Y.; Donev, E. U.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Modulated optical transmission of subwavelength hole arrays in metal-VO2 films. Appl. Phys. Lett. 2006, 88, 133115.

46

Dintinger, J.; Klein, S.; Ebbesen, T. W. Molecule-surface plasmon interactions in hole arrays: Enhanced absorption, refractive index changes, and all-optical switching. Adv. Mater. 2006, 18, 1267-1270.

47

Chu, K. C.; Chao, C. Y.; Chen, Y. F.; Wu, Y. C.; Chen, C. C. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl. Phys. Lett. 2006, 89, 103107.

48

Chen, C. T.; Liu, C. C.; Wang, C. H.; Chen, C. W.; Chen, Y. F. Tunable coupling between exciton and surface plasmon in liquid crystal devices consisting of Au nanoparticles and CdSe quantum dots. Appl. Phys. Lett. 2011, 98, 261918.

49

Kossyrev, P. A.; Yin, A.; Cloutier, S. G.; Cardimona, D. A.; Huang, D.; Alsing, P. M.; Xu, J. M. Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. Nano Lett. 2005, 5, 1978-1981.

50

Dickson, W.; Wurtz, G. A.; Evans, P. R.; Pollard, R. J.; Zayats, A. V. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 2008, 8, 281-286.

51
Jun, Y. C. Electrically-driven active plasmonic devices. In Plasmonics—Principles and Applications. Kim, K. Y., Ed.; InTech: Croatia, 2012; pp 385-400.
52

De Sio, L.; Klein, G.; Serak, S.; Tabiryan, N.; Cunningham, A.; Tone, C. M.; Ciuchi, F.; Burgi, T.; Umeton, C.; Bunning, T. All-optical control of localized plasmonic resonance realized by photoalignment of liquid crystals. J. Mate. Chem. C 2013, 1, 7483-7487.

53

Liu, Q.; Tang, J.; Zhang, Y.; Martinez, A.; Wang, S.; He, S.; White, T. J.; Smalyukh, I. I. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals. Phys. Rev. E 2014, 89, 052505.

54

De Sio, L.; Placido, T.; Serak, S.; Comparelli, R.; Tamborra, M.; Tabiryan, N.; Curri, M. L.; Bartolino, R.; Umeton, C.; Bunning, T. Nano-localized heating source for photonics and plasmonics. Adv. Opt. Mater. 2013, 1, 899-904.

55

Olson, J.; Swanglap, P.; Chang, W. S.; Khatua, S.; Solis, D.; Link, S. Detailed mechanism for the orthogonal polarization switching of gold nanorod plasmons. Phys. Chem. Chem. Phys. 2013, 15, 4195-4204.

56

Hsiao, V. K. S.; Zheng, Y. B.; Juluri, B. K.; Huang, T. J. Light-driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals. Adv. Mater. 2008, 20, 3528-3532.

57

Liu, Y. J.; Si, G. Y.; Leong, E. S. P.; Xiang, N.; Danner, A. J.; Teng, J. H. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv. Mater. 2012, 24, OP131-OP135.

58

Querejeta-Fernández, A.; Chauve, G.; Methot, M.; Bouchard, J.; Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 2014, 136, 4788-4793.

59

Jiang, L.; Wang, X.; Chi, L. Nanoscaled surface patterning of conducting polymers. Small 2011, 7, 1309-1321.

60

Baba, A.; Tada, K.; Janmanee, R.; Sriwichai, S.; Shinbo, K.; Kato, K.; Kaneko, F.; Phanichphant, S. Controlling surface plasmon optical transmission with an electrochemical switch using conducting polymer thin films. Adv. Funct. Mater. 2012, 22, 4383-4388.

61

Leroux, Y. R.; Lacroix, J. C.; Chane-Ching, K. I.; Fave, C.; Félidj, N.; Lévi, G.; Aubard, J.; Krenn, J. R.; Hohenau, A. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J. Am. Chem. Soc. 2005, 127, 16022-16023.

62

Stockhausen, V.; Martin, P.; Ghilane, J.; Leroux, Y.; Randriamahazaka, H.; Grand, J.; Felidj, N.; Lacroix, J. C. Giant plasmon resonance shift using poly(3, 4- ethylenedioxythiophene) electrochemical switching. J. Am. Chem. Soc. 2010, 132, 10224-10226.

63

Leroux, Y.; Lacroix, J. C.; Fave, C.; Trippe, G.; Félidj, N.; Aubard, J.; Hohenau, A.; Krenn, J. R. Tunable electrochemical switch of the optical properties of metallic nanoparticles. ACS Nano 2008, 2, 728-732.

64

Jiang, N.; Shao, L.; Wang, J. (Gold nanorod core)/ (polyaniline shell) plasmonic switches with large plasmon shifts and modulation depths. Adv. Mater. 2014, 26, 3282- 3289.

65

Gehan, H. l. n.; Mangeney, C.; Aubard, J.; Lévi, G.; Hohenau, A.; Krenn, J. R.; Lacaze, E.; Félidj, N. Design and optical properties of active polymer-coated plasmonic nanostructures. J. Phys. Chem. Lett. 2011, 2, 926-931.

66

Han, X.; Liu, Y.; Yin, Y. Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 2014, 14, 2466-2470.

67

Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233-5237.

68

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442-453.

69

Ringler, M.; Schwemer, A.; Wunderlich, M.; Nichtl, A.; Kürzinger, K.; Klar, T. A.; Feldmann, J. shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 2008, 100, 203002.

70

Wurtz, G. A.; Evans, P. R.; Hendren, W.; Atkinson, R.; Dickson, W.; Pollard, R. J.; Zayats, A. V.; Harrison, W.; Bower, C. Molecular plasmonics with tunable exciton- plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 2007, 7, 1297-1303.

71

Ming, T.; Zhao, L.; Xiao, M.; Wang, J. Resonance-coupling- based plasmonic switches. Small 2010, 6, 2514-2519.

72

Haes, A. J.; Zou, S.; Zhao, J.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 2006, 128, 10905-10914.

73

Zhao, J.; Das, A.; Zhang, X.; Schatz, G. C.; Sligar, S. G.; Van Duyne, R. P. Resonance surface plasmon spectroscopy: Low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc. 2006, 128, 11004-11005.

74

Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 2007, 129, 7647-7656.

75

Schlather, A. E.; Large, N.; Urban, A. S.; Nordlander, P.; Halas, N. J. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281-3286.

76

Morin, F. J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 1959, 3, 34-36.

77

Driscoll, T.; Palit, S.; Qazilbash, M. M.; Brehm, M.; Keilmann, F.; Chae, B. -G.; Yun, S. -J.; Kim, H. -T.; Cho, S. Y.; Jokerst, N. M.; et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 2008, 93, 024101.

78

Donev, E. U.; Suh, J. Y.; Villegas, F.; Lopez, R.; Haglund, R. F.; Feldman, L. C. Optical properties of subwavelength hole arrays in vanadium dioxide thin films. Phys. Rev. B 2006, 73, 201401.

79

Dicken, M. J.; Aydin, K.; Pryce, I. M.; Sweatlock, L. A.; Boyd, E. M.; Walavalkar, S.; Ma, J.; Atwater, H. A. Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt. Express 2009, 17, 18330-18339.

80

Suh, J. Y.; Lopez, R.; Feldman, L. C.; Haglund, R. F. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J. Appl. Phys. 2004, 96, 1209-1213.

81

Wei, J.; Wang, Z.; Chen, W.; Cobden, D. H. New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. 2009, 4, 420-424.

82

Ferrara, D. W.; Nag, J.; MacQuarrie, E. R.; Kaye, A. B.; Haglund, R. F. Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide. Nano Lett. 2013, 13, 4169-4175.

83

Zhou, H.; Cao, X.; Jiang, M.; Bao, S.; Jin, P. Surface plasmon resonance tunability in VO2/Au/VO2 thermochromic structure. Laser Photonics Rev. 2014, 8, 617-625.

Nano Research
Pages 406-417
Cite this article:
Sun Y, Jiang L, Zhong L, et al. Towards active plasmonic response devices. Nano Research, 2015, 8(2): 406-417. https://doi.org/10.1007/s12274-014-0682-x

669

Views

52

Crossref

N/A

Web of Science

51

Scopus

8

CSCD

Altmetrics

Received: 19 October 2014
Revised: 01 December 2014
Accepted: 04 December 2014
Published: 12 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return