Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-quality carbon nanotubes (CNTs) are promising materials in many applications. However, current chemical vapor deposition (CVD) methods for CNT synthesis suffer from the discrepancy between the quality and yield of CNTs: Low-quality CNTs can be synthesized with high yield, while high-quality CNTs can only be synthesized with low yield. Here a CVD method has been designed to synthesize both high-quality and low-quality CNTs using the same combination of catalyst and precursor. As a result, we were able to understand the reasons for the low yield in high-quality CNT synthesis and a method was derived to improve their yield. This understanding is an important step towards high-yield synthesis of high-quality CNTs.
Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
Joselevich, E.; Dai, H.; Liu, J.; Hata, K.; Windle, A. H. Carbon nanotube synthesis and organization. In Carbon Nanotubes. Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Eds.; Springer Berlin Heidelberg, 2008; pp 101–165.
Flahaut, E.; Laurent, C.; Peigney, A. Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 2005, 43, 375–383.
Qi, H.; Qian, C.; Liu, J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chemistry of Materials 2006, 18, 5691–5695.
Wang, W. L.; Bai, X. D.; Xu, Z.; Liu, S.; Wang, E. G. Low temperature growth of single-walled carbon nanotubes: Small diameters with narrow distribution. Chem. Phys. Lett. 2006, 419, 81–85.
Qi, H.; Qian, C.; Liu, J. Synthesis of uniform double-walled carbon nanotubes using iron disilicide as Catalyst. Nano Letters 2007, 7, 2417–2421.
Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S.; Liu, B.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232–5235.
Andrews, R.; Jacques, D.; Qian, D.; Rantell, T. Multiwall carbon nanotubes: Synthesis and application. Accounts of Chemical Research 2002, 35, 1008–1017.
Hiraoka, T.; Yamada, T.; Hata, K.; Futaba, D. N.; Kurachi, H.; Uemura, S.; Yumura, M.; Iijima, S. Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. Journal of the American Chemical Society 2006, 128, 13338–13339.
Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Nie, J. Q.; Wei, F. Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon 2010, 48, 3260–3270.
Costantino, U.; Marmottini, F.; Nocchetti, M.; Vivani, R. New synthetic routes to hydrotalcite-like compounds— Characterisation and Properties of the Obtained Materials. Eur. J. Inorg. Chem. 1998, 1998, 1439–1446.
He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X. Layered double hydroxide-based catalysts: nanostructure design and catalytic performance. Chem. Commun. (Cambridge, U. K. ) 2013, 49, 5912–5920.
Tian, G. L.; Zhao, M. Q.; Zhang, B.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Chen, T. C.; Qian, W. Z.; Su, D. S.; Wei, F. Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation. J. Mater. Chem. A 2014, 2, 1686–1696.
Chen, T. C.; Zhao, M. Q.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Wei, F. In situ monitoring the role of working metal catalyst nanoparticles for ultrahigh purity single-walled carbon nanotubes. Adv. Funct. Mater. 2013, 23, 5066–5073.
Tang, D. M.; Liu, C.; Yu, W. J.; Zhang, L. L.; Hou, P. X.; Li, J. C.; Li, F.; Bando, Y.; Golberg, D.; Cheng, H. M. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy. ACS Nano 2013, 8, 292–301.
Lu, C.; Liu, J. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding. J. Phys. Chem. B 2006, 110, 20254–20257.
Qian, C.; Qi, H.; Liu, J. Effect of tungsten on the purification of few-walled carbon nanotubes synthesized by thermal chemical vapor deposition methods. J. Phys. Chem. C 2006, 111, 131–133.
Yang, F.; Wang, X.; Zhang, D.; Yang, J.; LuoDa; Xu, Z.; Wei, J.; Wang, J. Q.; Xu, Z.; Peng, F.; Li, X.; Li, R.; Li, Y.; Li, M.; Bai, X.; Ding, F.; Li, Y. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.
Herrera, J. E.; Resasco, D. E. Role of Co−W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. J. Phys. Chem. B 2003, 107, 3738– 3746.
Landois, P.; Peigney, A.; Laurent, C.; Frin, L.; Datas, L.; Flahaut, E. CCVD synthesis of carbon nanotubes with W/Co–MgO catalysts. Carbon 2009, 47, 789–794.
Youn, S. K.; Park, H. G. Morphological evolution of Fe–Mo bimetallic catalysts for diameter and density modulation of vertically aligned carbon nanotubes. J. Phys. Chem. C 2013, 117, 18657–18665.