Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Using nanoscale electrical-discharge-induced rapid Joule heating, we developed a method for ultrafast shape change and joining of small-volume materials. Shape change is dominated by surface-tension-driven convection in the transient liquid melt, giving an extremely high strain rate of ~106 s–1. In addition, the heat can be dissipated in small volumes within a few microseconds through thermal conduction, quenching the melt back to the solid state with cooling rates up to 108 K·s-1. We demonstrate that this approach can be utilized for the ultrafast welding of small-volume crystalline Mo (a refractory metal) and amorphous Cu49Zr51 without introducing obvious microstructural changes, distinguishing the process from bulk welding.
Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986-989.
Shan, Z. W.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 2008, 7, 115-119.
Yu, Q.; Shan, Z. W.; Li, J.; Huang, X.; Xiao, L.; Sun, J.; Ma, E. Strong crystal size effect on deformation twinning. Nature 2010, 463, 335-338.
Wang, C. C.; Mao, Y. W.; Shan, Z. W.; Dao, M.; Li, J.; Sun, J.; Ma, E.; Suresh, S. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass. Proc. Nat. Acad. Sci. U.S.A. 2013, 110, 19725-19730.
Tian, L.; Cheng, Y. Q.; Shan, Z. W.; Li, J.; Wang, C. C.; Han, X. D.; Sun, J.; Ma, E. Approaching the ideal elastic limit of metallic glasses. Nat. Comm. 2012, 3, 609.
Wang, C. C.; Ding, J.; Cheng, Y. Q.; Wan, J. C.; Tian, L.; Sun, J.; Shan, Z. W.; Li, J.; Ma, E. Sample size matters for al88fe7gd5 metallic glass: Smaller is stronger. Acta Mater. 2012, 60, 5370-5379.
Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735-739.
Jang, D. C.; Greer, J. R. Transition from a strong yet brittle to a stronger and ductile state by size reduction of metallic glasses. Nat. Mater. 2010, 9, 215-219.
Jiang, Q. K.; Liu, P.; Cao, Q. P.; Wang, C.; Li, X. L.; Gao, X. Y.; Wang, X. D.; Zhang, D. X.; Han, X. D.; Zhang, Z.; Jiang, J. Z. The effect of size on the elastic strain limit in Ni60Nb40 glassy films. Acta Mater. 2013, 61, 4689-4695.
Deng, Q. S.; Cheng, Y. Q.; Yue, Y. H.; Zhang, L.; Zhang, Z.; Han, X. D.; Ma, E. Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding. Acta Mater. 2011, 59, 6511-6518.
Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868-U128.
Schroers, J. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566-1597.
Johnson, W. L.; Kaltenboeck, G.; Demetriou, M. D.; Schramm, J. P.; Liu, X.; Samwer, K.; Kim, C. P.; Hofmann, D. C. Beating crystallization in glass-forming metals by millisecond heating and processing. Science 2011, 332, 828-833.
Swiston, A. J.; Hufnagel, T. C.; Weihs, T. P. Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 2003, 48, 1575-1580.
Kawamura, Y.; Ohno, Y. Spark welding of Zr55Al10Ni5Cu30 bulk metallic glasses. Scr. Mater. 2001, 45, 127-132.
De Heer, W. A.; Chatelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179- 1180.
Wang, Q. H.; Corrigan, T. D.; Dai, J. Y.; Chang, R. P. H.; Krauss, A. R. Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 1997, 70, 3308-3310.
Chatterton, P. A. A theoretical study of field emission initiated vacuum breakdown. Proc. Phys. Soc. London 1966, 88, 231-245.
Charbonnier, F. M.; Bennette, C. J.; Swanson, L. W. Electrical breakdown between metal electrodes in high vacuum. I. Theory. J. Appl. Phys. 1967, 38, 627-640.
Utsumi, T. Cathode- and anode-induced electrical breakdown in vacuum. J. Appl. Phys. 1967, 38, 2989.
Smith, W. A.; Elliot, C. T.; Pulfrey, D. L. A photographic study of electrical breakdown at small gaps in vacuum. J. Phys. D-Appl. Phys. 1969, 2, 1005.
Davies, D. K.; Biondi, M. A. Detection of electrode vapor between plane parallel copper electrodes prior to current amplification and breakdown in vacuum. J. Appl. Phys. 1970, 41, 88.
Iida, T.; Guthrie, R. Predictions for the sound velocity in various liquid metals at their melting point temperatures. Metal. and Materi. Trans. B 2009, 40, 959-966.
Zhong, L.; Wang, J.; Sheng, H.; Zhang, Z.; Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 2014, 512, 177-180.
Jiang, Q. K.; Wang, X. D.; Nie, X. P.; Zhang, G. Q.; Ma, H.; Fecht, H. J.; Bednarcik, J.; Franz, H.; Liu, Y. G.; Cao, Q. P.; Jiang, J. Z. Zr-(Cu, Ag)-Al bulk metallic glasses. Acta Mater. 2008, 56, 1785-1796.
de Heer, W. A.; Poncharal, P.; Berger, C.; Gezo, J.; Song, Z. M.; Bettini, J.; Ugarte, D. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science 2005, 307, 907-910.
Choy, C. L.; Tong, K. W.; Wong, H. K.; Leung, W. P. Thermal conductivity of amorphous alloys above room temperature J. Appl. Phys. 1991, 70, 4919-4925.
Lide, D. R. CRC handbook of chemistry and physics; CRC Press, 2009.
Mishin, Y.; Asta, M.; Li, J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 2010, 58, 1117-1151.
Tian, L.; Li, J.; Sun, J.; Ma, E.; Shan, Z. -W. Visualizing size- dependent deformation mechanism transition in Sn. Scientific Reports 2013, 3, 2113.
Jin, C. H.; Suenaga, K.; Iijima, S. Plumbing carbon nanotubes. Nat. Nanotechnol. 2008, 3, 17-21.
Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 2010, 5, 218–224.