AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interface dipole enhancement effect and enhanced Rayleigh scattering

Wenyun Wu1,§Jingying Yue1,§Dongqi Li1Xiaoyang Lin1Fangqiang Zhu2Xue Yin3Jun Zhu3Xingcan Dai1( )Peng Liu1Yang Wei1Jiaping Wang1Haitao Yang1Lina Zhang1Qunqing Li1Shoushan Fan1Kaili Jiang1,4( )
State Key Laboratory of Low-Dimensional Quantum PhysicsDepartment of Physics & Tsinghua-Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Department of PhysicsIndiana University-Purdue University IndianapolisIndianapolis, IndianaUSA
State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentsTsinghua UniversityBeijing100084China
Collaborative Innovation Center of Quantum MatterBeijing100084China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The optical effect of a nanometer or sub-nanometer interfacial layer of condensed molecules surrounding individual nanomaterials such as single-walled carbon nanotubes (SWCNTs) has been studied theoretically and experimentally. This interfacial layer, when illuminated by light, behaves as an optical dipole lattice and contributes an instantaneous near field which enhances the local field on neighboring atoms, molecules, or nanomaterials, which in turn may lead to enhanced Rayleigh scattering, Raman scattering, and fluorescence. The theory of this interface dipole enhanced effect (IDEE) predicts that a smaller distance between the nanomaterials and the plane of the interfacial layer, or a larger ratio of the dielectric constants of the interfacial layer to the surrounding medium, will result in a larger field enhancement factor. This prediction is further experimentally verified by several implementations of enhanced Rayleigh scattering of SWCNTs as well as in situ Rayleigh scattering of gradually charged SWCNTs. The interface dipole enhanced Rayleigh scattering not only enables true-color real-time imaging of nanomaterials, but also provides an effective means to peer into the subtle interfacial phenomena.

References

1

Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P. Carbon nanotubes in water: Structural characteristics and energetics. J. Phys. Chem. B. 2001, 105, 9980–9987.

2

Huang, B. D.; Xia, Y. Y.; Zhao, M. W.; Li, F.; Liu, X. D.; Ji, Y. J.; Song, C. Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. J. Chem. Phys. 2005, 122, 0847088.

3
Wu, W. Y.; Yue, J. Y.; Lin, X. Y.; Li, D. Q.; Zhu, F. Q.; Yin, X.; Zhu, J.; Wang, J. T.; Zhang, J.; Chen, Y.; et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates by enhanced Rayleigh scattering. 2014, submitted.
4

Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Saunders College: New York, 1976.

5

Fabelinskii, I. L. Molecular Scattering of Light; Plenum Press: New York, 1968.

6

Sargent Ⅲ, M.; Scully, M. O.; Lamb Jr, W. E. Laser Physics; Addison Wesley: New York, 1974.

7

Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics, Mainly Electromagnetism and Matter, Volume Ⅱ; Addison-Wesley: Reading, Massachusetts, 1977.

8

Kittel, C. Introduction to Solid State Physics (8th edition); Wiley: New York, 2004.

9

Jackson, J. D. Classical Electrodynamics (3rd edition); Wiley: New York, 1998.

10

Maier, S. A. Plasmonics: Fundamentals and Applications; Springer: New York, 2007.

11

Yu, Z.; Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. J. Phys. Chem. B. 2001, 105, 1123–1134.

12

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540–1543.

13

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 2007, 58, 719–747.

14

Berciaud, S.; Voisin, C.; Yan, H. G.; Chandra, B.; Caldwell, R.; Shan, Y. Y.; Brus, L. E.; Hone, J.; Heinz, T. F. Excitons and high-order optical transitions in individual carbon nanotubes: A Rayleigh scattering spectroscopy study. Phys. Rev. B. 2010, 81, 041414.

15

Joh, D. Y.; Kinder, J.; Herman, L. H.; Ju, S. Y.; Segal, M. A.; Johnson, J. N.; ChanGarnet, K. L.; Park, J. Single-walled carbon nanotubes as excitonic optical wires. Nat. Nanotech. 2011, 6, 51–56.

16

Sfeir, M. Y.; Beetz, T.; Wang, F.; Huang, L. M; Huang, X. M. H.; Huang, M. Y.; Hone, J.; O'Brien, S.; Misewich, J. A.; Heinz, T. F.; et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 2006, 312, 554–556.

17

Joh, D. Y.; Herman, L. H.; Ju, S. Y.; Kinder, J.; Segal, M. A.; Johnson, J. N.; Chan, G. K. L.; Park, J. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 2011, 11, 1–7.

18

Lefebvre, J.; Finnie, P. Polarized light microscopy and spectroscopy of individual single-walled carbon nanotubes. Nano Res. 2011, 4, 788–794.

19

Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G.; et al. An atlas of carbon nanotube optical transitions. Nat. Nanotech. 2012, 7, 325–329.

20

Liu, K. H.; Hong, X. P.; Zhou, Q.; Jin, C. H.; Li, J. H.; Zhou, W. W.; Liu, J.; Wang, E. G.; Zettl, A.; Wang, F. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat. Nanotech. 2013, 8, 917–922.

21

MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998, 102, 3586–3616.

22

Hatcher, E. R.; Guvench, O.; MacKerell Jr, A. D. CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates, and inositol. J. Chem. Theory Comput. 2009, 5, 1315–1327.

23

Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.

24

Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802.

25

Ryckaert, J-P.; Ciccotti, G.; Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341.

26

Miyamoto, S.; Kollman, P. A. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962.

27

Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

28

Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant pressure molecular dynamics simulation: The Langevin piston method. J. Chem. Phys. 1995, 103, 4613–4621.

Nano Research
Pages 303-319
Cite this article:
Wu W, Yue J, Li D, et al. Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Research, 2015, 8(1): 303-319. https://doi.org/10.1007/s12274-014-0687-5
Part of a topical collection:

654

Views

12

Crossref

N/A

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 07 November 2014
Revised: 04 December 2014
Accepted: 07 December 2014
Published: 29 December 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return