Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with brain science. First, we briefly summarize some of the considerations and the research journey that has led to our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for and our seminal contributions to nanowire-based nanoscience and technology, including the rational design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of "applications" enabled by the capability to control structure, composition and size from the atomic level upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for brain science, including (ⅰ) motivation for nanoelectronics in brain science, (ⅱ) demonstration of nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (ⅲ) the development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single ion channels, (ⅳ) the introduction and demonstration of a new paradigm for innervating cell networks with addressable nanoelectronic arrays in three-dimensions. Last, we conclude with a brief discussion of the exciting and potentially transformative advances expected to come from work at the nanoelectronics-brain interface.
Wu, X. -L.; Zhou, P.; Lieber, C. M. Surface electronic properties probed with tunneling microscopy and chemical doping. Nature 1988, 335, 55-57.
Wu, X. -L.; Zhou, P.; Lieber, C. M. Determination of the local effect of impurities on the charge-density-wave phase in TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1988, 61, 2604-2607.
Wu, X. L.; Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 1989, 243, 1703-1705.
Wu, X. L.; Lieber, C. M. Scanning tunneling microscopy investigations of a new charge density wave phase in niobium-doped tantalum disulfide. J. Am. Chem. Soc. 1989, 111, 2731-2733.
Wu, X. L.; Lieber, C. M.; Ginley, D. S.; Baughman, R. J. Scanning tunneling microscopy investigations of the local structure of Tl2Ba2CaCu2O8 single crystals. Appl. Phys. Lett. 1989, 55, 2129-2131.
Wu, X. L.; Lieber, C. M. Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1T-TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1990, 64, 1150-1153.
Wu, X. L.; Zhang, Z.; Wang, Y. L.; Lieber, C. M. Structural and electronic role of lead in (PbBi)2 Sr2CaCu2O8 superconductors by STM. Science 1990, 248, 1211-1214.
Zhang, Z.; Wang, Y. L.; Wu, X. L.; Huang, J. -L.; Lieber, C. M. Electronic effect of lead substitution in single-crystal Bi(Pb)-Sr-Ca-Cu-O superconductors determined by scanning tunneling microscopy. Phys. Rev. B 1990, 42, 1082-1085.
Dai, H. J.; Chen, H. F.; Lieber, C. M. Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 1991, 66, 3183-3186.
Lieber, C. M.; Wu, X. L. Scanning tunneling microscopy studies of low-dimensional materials: Probing the effects of chemical substitutions at the atomic level. Acc. Chem. Res. 1991, 24, 170-177.
Dai, H. J.; Lieber, C. M. Solid-hexatic-liquid phases in two-dimensional charge-density waves. Phys. Rev. Lett. 1992, 69, 1576-1579.
Zhang, Z.; Lieber, C. M. Measurement of the energy gap in oxygen-annealed Bi2Sr2CaCu2O8+δ high-Tcsuperconductors by tunneling spectroscopy. Phys. Rev. B 1993, 47, 3423-3426.
Dai, H. J.; Lieber, C. M. Scanning tunneling microscopy studies of low-dimensional materials: Charge density wave pinning and melting in two dimensions. Ann. Rev. Phys. Chem. 1993, 44, 237-263.
Kelty, S. P.; Chen, C. -C.; Lieber, C. M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223-225.
Chen, C. -C.; Kelty, S. P.; Lieber, C. M. (RbxK1-x)C60superconductors: Formation of a continuous series of solid solutions. Science 1991, 253, 886-888.
Zhang, Z; Chen, C. -C.; Kelty, S. P.; Dai, H. J.; Lieber, C. M. The superconducting energy gap of Rb3C60. Nature 1991, 353, 333-335.
Zhang, Z.; Chen, C. -C.; Lieber, C. M. Tunneling spectroscopy of M3C60 superconductors: The energy gap, strong coupling, and superconductivity. Science 1991, 254, 1619-1621.
Chen, C. -C.; Lieber, C. M. Isotope effect and superconductivity in metal-doped C60. Science 1993, 259, 655-658.
Chen, C. -C.; Lieber, C. M. Synthesis of pure 13C60 and determination of the isotope effect forfullerene superconductors. J. Am. Chem. Soc. 1992, 114, 3141-3142.
Zhang, Z.; Lieber, C. M. Nanotube structure and electronic properties probed by scanning tunneling microscopy. Appl. Phys. Lett. 1993, 62, 2792-2794.
Odom, T. W.; Huang, J. -L.; Kim P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62-64.
Kim P.; Odom, T. W.; Huang, J. -L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225-1228.
Venkataraman, L.; Lieber, C. M. Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 1999, 83, 5334-5337.
Odom, T. W.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host. Science 2000, 290, 1549-1552.
Ouyang, M.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 2001, 291, 97-100.
Ouyang, M.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Energy gaps in "metallic" single-walled carbon nanotubes. Science 2001, 292, 702-705.
Ouyang, M.; Huang, J. -L.; Lieber, C. M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 2002, 88, 066804.
Ouyang, M.; Huang, J. -L.; Lieber, C. M. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu. Rev. Phys. Chem. 2002, 53, 201-220.
Frisbie, C. D.; Rozsnyai, L. F.; Noy, A.; Wrighton, M. S.; Lieber, C. M. Functional group imaging by chemical force microscopy. Science 1994, 265, 2071-2074.
Noy, A.; Vezenov, D. V.; Lieber, C. M. Chemical force microscopy. Annu. Rev. Mater. Sci. 1997, 27, 381-421.
Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523-526.
Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science 1997, 277, 1971-1975.
Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 1998, 394, 52-55.
Kim, P.; Lieber, C. M. Nanotube nanotweezers. Science 1999, 286, 2148-2150.
Rueckes, T.; Kim, K; Joselevich, E.; Tseng, G. Y.; Cheung, C. -L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94-97.
Dai, H. J.; Wong, E. W.; Lu, Y. Z.; Fan, S. S.; Lieber, C. M. Synthesis and characterization of carbide nanorods. Nature 1995, 375, 769-772.
Wong, E. W.; Maynor, B. W.; Burns, L. D.; Lieber, C. M. Growth of metal carbide nanotubes and nanorods. Chem. Mater. 1996, 8, 2041-2046.
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48-51.
Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.
Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298-302.
Duan, X. F.; Wang, J. F.; Lieber, C. M. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 2000, 76, 1116-1118.
Wei, Q.; Lieber, C. M. Solution-based synthesis of magnesium oxide nanorods. MRS Proc. 1999, 581, 3-7.
Wei, Q.; Lieber, C. M. Synthesis of single crystal bismuth-telluride and lead-telluride nanowires for new thermoelectrical materials. MRS Proc. 1999, 581, 219-223.
Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213-5216.
Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214-2216.
Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 2001, 105, 4062-4064.
Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B2002, 106, 4036-4039.
Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 2002, 420, 57-61.
Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343-346.
Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 2003, 125, 11498-11499.
Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433-436.
Wang, D. L.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871-874.
Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 2004, 84, 4176-4178.
Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004, 362, 1247-1260.
Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.
Bell, D. C.; Wu, Y.; Barrelet, C. J.; Gradečak, S.; Xiang, J.; Timko B. P.; Lieber, C. M. Imaging and analysis of nanowires. Microscop. Res. Tech. 2004, 64, 373-389.
Qian, F.; Li, Y.; Gradečak, S.; Wang, D.; Barrelet, C. J.; Lieber, C. M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 2004, 4, 1975-1979.
Zheng, G.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890-1893.
Lu, W.; Xiang, J.; Timko, B. P.; Wu, Y.; Lieber, C. M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10046-10051.
Radovanovic, P.V.; Barrelet, C. J.; Gradečak, S.; Qian, F.; Lieber, C. M. General synthesis of manganese-doped Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor nanowires. Nano Lett. 2005, 5, 1407-1411.
Qian, F.; Gradečak, S.; Li, Y.; Wen, C. -Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287-2291.
Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation doped silicon nanowires. Science 2005, 310, 1304-1307.
Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489-493.
Li, Y.; Xiang, J.; Qian, F.; Gradečak, S.; Wu, Y.; Yan, H.; Blom, D. A.; Lieber, C. M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 2006, 6, 1468-1473.
Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Materials Today 2006, 9, 18-27.
Agarwal, R.; Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A: Mater. Sci. Proc. 2006, 85, 209-215.
Lu, W.; Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387-R406.
Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929-2934.
Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99-108.
Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214-3218.
Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.
Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu, W.; Lieber, C. M. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 2008, 8, 386-391.
Park, W. I.; Zheng, G. F.; Jiang, X. C.; Tian, B. Z.; Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 2008, 8, 3004-3009.
Qian, F.; Li, Y.; Gradečak, S.; Park, H. -G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 2008, 7, 701-706.
Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456-3460.
Dong, Y. J.; Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Coaxial group Ⅲ-nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183-2187.
Zwanenburg, F. A.; van Loon, A. A.; Steele, G. A.; van Rijmenam, C. E. W. M.; Balder, T.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Ultra-small silicon quantum dots. J. Appl. Phys. 2009, 105, 124314-1.
Xie, P.; Hu, Y. J.; Fang, Y.; Huang, J. L.; Lieber, C. M. Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15254-15258.
Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824-829.
Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field effect transistors as localized bioprobes. Science 2010, 329, 830-834.
Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 12212-12216.
Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 2011, 36, 1052-1063.
Kempa, T. J.; Cahoon, J. F.; Kim, S. -K.; Day, R. W.; Bell, D. C.; Park, H. -G.; Lieber, C. M. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 1407-1412.
Jiang, Z.; Qing, Q.; Xie, P.; Gao, R. X.; Lieber, C. M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 2012, 12, 1711-1716.
Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically-encoded ultrashort-channel nanowire transistors for fast, point-like cellular signal detection. Nano Lett. 2012, 12, 2639-2644.
Xu, L.; Jiang, Z.; Qing, Q.; Mai, L. Q.; Zhang, Q. J.; Lieber, C. M. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 2013, 13, 746-751.
Kempa, T. J.; Kim, S. -K.; Day, R. W.; Park, H. -G.; Nocera, D. G.; Lieber, C. M. Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 2013, 135, 18354-18357.
Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.
Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633.
Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.
Lieber, C. M. The incredible shrinking circuit. Sci. Am. 2001, 285, 59-64.
Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. -H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.
Lieber, C. M. Nanoscience and nanotechnology: Building a big future from small things; New York Academy of Sciences: New York, 2002; pp 6-9.
Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486-491.
Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255-1259.
McAlpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K. -H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003, 3, 1531-1535.
Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377-1379.
Jin, S.; Whang, D.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915-919.
Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142-147.
Agarwal, R.; Ladavac, K.; Roichman, Y.; Yu, G. H.; Lieber, C. M.; Grier, D. G. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 2005, 13, 8906-8912.
Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773-777.
Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 2007, 6, 841-850.
Yan, H.; Choe, H. S.; Nam, S.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240-244.
Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329-335.
Yao. J.; Yan, H.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 2431-2435.
Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101-104.
Duan, X. F.; Huang, Y.; Cui, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487-490.
Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149-152.
Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. High-speed integrated nanowire circuits. Nature 2005, 434, 1085.
McAlpine, M. C.; Friedman, R. S.; Lieber, C. M. High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 2005, 93, 1357-1363.
Hu, Y. J.; Xiang, J.; Liang, G.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925-930.
Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859-2876.
Nam, S.; Jiang, X. C.; Xiong, Q. H.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21035-21038.
Zhong, Z. H.; Fang, Y.; Lu, W.; Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 2005, 5, 1143-1146.
Xiang, J.; Vidan, A.; Tinkham, M.; Westervelt, R. M.; Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 2006, 1, 208-213.
Hu, Y.; Churchill, H. O. H.; Reilly, D. J.; Xiang, J.; Lieber, C. M.; Marcus, C. M. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2007, 2, 622-625.
Roddaro, S.; Fuhrer, A.; Brusheim, P.; Fasth, C.; Xu, H. Q.; Samuelson, L.; Xiang, J.; Lieber, C. M. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 2008, 101, 186802.
Zwanenburg, F. A.; van Rijmenam, C. E. W. M.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 2009, 9, 1071-1079.
Lee, E. J. H.; Jiang, X. C.; Aguado, R.; Katsaros, G.; Lieber, C. M.; De Franceschi, S. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 2012, 109, 186802.
Lee, E. J. H.; Jiang, X. C.; Houzet, M.; Aguado, R.; Lieber, C. M.; De Franceschi, S. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 2014, 9, 79-84.
Higginbotham, A.; Larsen, T. W.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M.; Kuemmeth, F. Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Lett. 2014, 14, 3582-3586.
Higginbotham, A. P.; Kuemmeth, F.; Larsen, T. W.; Fitzpatrick, M.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M. Antilocalization of Coulomb blockade in Ge/Si nanowire. Phys. Rev. Lett. 2014, 112, 216806.
Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455-1457.
Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241-245.
Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981-1985.
Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917-920.
Greytak, A. B.; Barrelet, C. J.; Li, Y.; Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 2005, 87, 151103.
Gradečak, S.; Qian, F.; Li, Y.; Park, H. -G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.
Barrelet, C. J.; Bao, J. M.; Lončar, M.; Park, H. -G.; Capasso, F.; Lieber, C. M. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 2006, 6, 11-15.
Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly-sensitive and spatially-resolved photon detection. Nat. Mater. 2006, 5, 352-356.
Park, H. -G.; Barrelet, C. J.; Wu, Y. N.; Tian, B. Z.; Qian, F.; Lieber, C. M. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2008, 2, 622-626.
Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonicnanolaser. Nat. Comm. 2014, 5, 4953.
Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16-24.
Kim, S. -K.; Day, R. W.; Cahoon, J. F.; Kempa, T. J.; Song, K. -D.; Park, H. -G.; Lieber, C. M. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 2012, 12, 4971-4976.
Kempa, T. J.; Day, R. W.; Kim, S. -K.; Park, H. -G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719-733.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
Yang, P. D.; Tarascon, J. -M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560-563.
Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828-11862.
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
Hahm, J. -I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51-54.
Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017-14022.
Wang, W. U.; Chen, C.; Lin, K. -H.; Fang, Y.; Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3208-3212.
Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.
Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006, 1, 51-65.
Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100-1104.
Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711-1724.
Timko, B. P.; Cohen-Karni, T.; Yu, G. H.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009, 9, 914-918.
Cohen-Karni, T.; Timko, B. P.; Weiss, L. E.; Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7309-7313.
Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547-552.
Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1882-1887.
Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010, 10, 1098-1102.
Timko, B. P.; Cohen-Karni, T.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 2010, 9, 269-280.
Zheng, G. F.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179-3183.
Xie, P.; Xiong, Q. H.; Fang, Y.; Qing, Q.; Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 2012, 7, 119-125.
Duan, X. J.; Gao, R. X.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B. Z.; Jiang, X. C.; Lieber, C. M. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 2012, 7, 174-179.
Gao, R. X.; Strehle, S.; Tian, B. Z.; Cohen-Karni, T.; Xie, P.; Duan, X. J.; Qing, Q.; Lieber, C. M. Outside looking in: Nanotube transistor intracellular sensors. Nano Lett. 2012, 12, 3329-3333.
Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986-994.
Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. U.S. A. 2013, 110, 6694-6699.
Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 2013, 6, 31-51.
Duan, X. J.; Fu, T. -M.; Liu, J.; Lieber, C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 2013, 8, 351-373.
Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142-147.
Fu, T. -M.; Duan, X. J.; Jiang, Z.; Dai, X. C.; Xie, P.; Cheng, Z. G.; Lieber, C. M. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1259-1264.
Zhou, W.; Dai, X. C.; Fu, T-M.; Xie, C.; Liu, J.; Lieber, C. M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614-1619.
Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185-190.
Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. -H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180-184.
Shepherd, G. M. The Synaptic Organization of the Brain, 5th Ed.; Oxford Univ Press, Inc. : New York, 2004.
Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature 2009, 461, 930-939.
Seymour, J. P.; Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007, 28, 3594-3607.
Viventi, J.; Kim, D. -H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. -S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. -W.; Vanleer, A. C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599-1605.
Erickson, J.; Tooker, A.; Tai, Y. C.; Pine, J. Caged neuron MEA: Asystem for long-term investigation of cultured neural network connectivity. J. Neurosci. Methods 2008, 175, 1-16.
Egert, U.; Heck, D.; Aertsen, A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res. 2002, 142, 268-274.
Wirth, C.; Lüscher, H. R. Spatiotemporalevolution of excitation and inhibition in the rat barrel cortex investigated with multielectrodearrays. J. Neurophysiol. 2004, 91, 1635-1647.
Frey, U.; Egert, U.; Heer, F.; Hafizovic, S.; Hierlemann, A. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 2009, 24, 2191-2198.
Stangl, C.; Fromherz, P. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 2008, 27, 958-964.
Davie, J. T.; Kole, M. H. P.; Letzkus, J. J.; Rancz, E. A.; Spruston, N.; Stuart, G. J.; Häusser, M. Dendritic patch-clamp recording. Nat. Protoc. 2006, 1, 1235-1247.
Duan, X. J.; Lieber, C. M. Nanoelectronicsmeets biology: From new nanoscaledevices for live-cell recording to 3D innervated tissues. Chem. Asian J. 2013, 8, 2304-2314.
Bers, D. M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198-205.
Koch, C.; Reid, R. C. Neuroscience: Observatories of the mind. Nature 2012, 483, 397-398.
Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13-22.
Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H. W.; Parker, K. K.; Langer, R.; Kohane, D. S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011, 6, 720-725.
Kim, D. -H.; Lu, N. S.; Ma, R.; Kim, Y. -S.; Kim, R. -H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science, 2011, 333, 838-843.