AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanoscience and the nano-bioelectronics frontier

Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMA02138USA
School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
Show Author Information

Graphical Abstract

Abstract

This review describes work presented in the 2014 inaugural Tsinghua University Press-Springer Nano Research Award lecture, as well as current and future opportunities for nanoscience research at the interface with brain science. First, we briefly summarize some of the considerations and the research journey that has led to our focus on bottom-up nanoscale science and technology. Second, we recapitulate the motivation for and our seminal contributions to nanowire-based nanoscience and technology, including the rational design and synthesis of increasingly complex nanowire structures, and the corresponding broad range of "applications" enabled by the capability to control structure, composition and size from the atomic level upwards. Third, we describe in more detail nanowire-based electronic devices as revolutionary tools for brain science, including (ⅰ) motivation for nanoelectronics in brain science, (ⅱ) demonstration of nanowire nanoelectronic arrays for high-spatial/high-temporal resolution extracellular recording, (ⅲ) the development of fundamentally-new intracellular nanoelectronic devices that approach the sizes of single ion channels, (ⅳ) the introduction and demonstration of a new paradigm for innervating cell networks with addressable nanoelectronic arrays in three-dimensions. Last, we conclude with a brief discussion of the exciting and potentially transformative advances expected to come from work at the nanoelectronics-brain interface.

References

1

Wu, X. -L.; Zhou, P.; Lieber, C. M. Surface electronic properties probed with tunneling microscopy and chemical doping. Nature 1988, 335, 55-57.

2

Wu, X. -L.; Zhou, P.; Lieber, C. M. Determination of the local effect of impurities on the charge-density-wave phase in TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1988, 61, 2604-2607.

3

Wu, X. L.; Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 1989, 243, 1703-1705.

4

Wu, X. L.; Lieber, C. M. Scanning tunneling microscopy investigations of a new charge density wave phase in niobium-doped tantalum disulfide. J. Am. Chem. Soc. 1989, 111, 2731-2733.

5

Wu, X. L.; Lieber, C. M.; Ginley, D. S.; Baughman, R. J. Scanning tunneling microscopy investigations of the local structure of Tl2Ba2CaCu2O8 single crystals. Appl. Phys. Lett. 1989, 55, 2129-2131.

6

Wu, X. L.; Lieber, C. M. Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1T-TaS2 by scanning tunneling microscopy. Phys. Rev. Lett. 1990, 64, 1150-1153.

7

Wu, X. L.; Zhang, Z.; Wang, Y. L.; Lieber, C. M. Structural and electronic role of lead in (PbBi)2 Sr2CaCu2O8 superconductors by STM. Science 1990, 248, 1211-1214.

8

Zhang, Z.; Wang, Y. L.; Wu, X. L.; Huang, J. -L.; Lieber, C. M. Electronic effect of lead substitution in single-crystal Bi(Pb)-Sr-Ca-Cu-O superconductors determined by scanning tunneling microscopy. Phys. Rev. B 1990, 42, 1082-1085.

9

Dai, H. J.; Chen, H. F.; Lieber, C. M. Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system. Phys. Rev. Lett. 1991, 66, 3183-3186.

10

Lieber, C. M.; Wu, X. L. Scanning tunneling microscopy studies of low-dimensional materials: Probing the effects of chemical substitutions at the atomic level. Acc. Chem. Res. 1991, 24, 170-177.

11

Dai, H. J.; Lieber, C. M. Solid-hexatic-liquid phases in two-dimensional charge-density waves. Phys. Rev. Lett. 1992, 69, 1576-1579.

12

Zhang, Z.; Lieber, C. M. Measurement of the energy gap in oxygen-annealed Bi2Sr2CaCu2O8+δ high-Tcsuperconductors by tunneling spectroscopy. Phys. Rev. B 1993, 47, 3423-3426.

13

Dai, H. J.; Lieber, C. M. Scanning tunneling microscopy studies of low-dimensional materials: Charge density wave pinning and melting in two dimensions. Ann. Rev. Phys. Chem. 1993, 44, 237-263.

14

Kelty, S. P.; Chen, C. -C.; Lieber, C. M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223-225.

15

Chen, C. -C.; Kelty, S. P.; Lieber, C. M. (RbxK1-x)C60superconductors: Formation of a continuous series of solid solutions. Science 1991, 253, 886-888.

16

Zhang, Z; Chen, C. -C.; Kelty, S. P.; Dai, H. J.; Lieber, C. M. The superconducting energy gap of Rb3C60. Nature 1991, 353, 333-335.

17

Zhang, Z.; Chen, C. -C.; Lieber, C. M. Tunneling spectroscopy of M3C60 superconductors: The energy gap, strong coupling, and superconductivity. Science 1991, 254, 1619-1621.

18

Chen, C. -C.; Lieber, C. M. Isotope effect and superconductivity in metal-doped C60. Science 1993, 259, 655-658.

19

Chen, C. -C.; Lieber, C. M. Synthesis of pure 13C60 and determination of the isotope effect forfullerene superconductors. J. Am. Chem. Soc. 1992, 114, 3141-3142.

20

Zhang, Z.; Lieber, C. M. Nanotube structure and electronic properties probed by scanning tunneling microscopy. Appl. Phys. Lett. 1993, 62, 2792-2794.

21

Odom, T. W.; Huang, J. -L.; Kim P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62-64.

22

Kim P.; Odom, T. W.; Huang, J. -L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225-1228.

23

Venkataraman, L.; Lieber, C. M. Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 1999, 83, 5334-5337.

24

Odom, T. W.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host. Science 2000, 290, 1549-1552.

25

Ouyang, M.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 2001, 291, 97-100.

26

Ouyang, M.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Energy gaps in "metallic" single-walled carbon nanotubes. Science 2001, 292, 702-705.

27

Ouyang, M.; Huang, J. -L.; Lieber, C. M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 2002, 88, 066804.

28

Ouyang, M.; Huang, J. -L.; Lieber, C. M. Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes. Annu. Rev. Phys. Chem. 2002, 53, 201-220.

29

Frisbie, C. D.; Rozsnyai, L. F.; Noy, A.; Wrighton, M. S.; Lieber, C. M. Functional group imaging by chemical force microscopy. Science 1994, 265, 2071-2074.

30

Noy, A.; Vezenov, D. V.; Lieber, C. M. Chemical force microscopy. Annu. Rev. Mater. Sci. 1997, 27, 381-421.

31

Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes. Science 1996, 272, 523-526.

32

Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science 1997, 277, 1971-1975.

33

Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 1998, 394, 52-55.

34

Kim, P.; Lieber, C. M. Nanotube nanotweezers. Science 1999, 286, 2148-2150.

35

Rueckes, T.; Kim, K; Joselevich, E.; Tseng, G. Y.; Cheung, C. -L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94-97.

36
Nantero. http://www.nantero.com/ (accessed on Dec. 7, 2014). Copyright 2000-2014, Nantero. Nantero is using carbon nanotubes for the development of next-generation semiconductor devices, including memory, logic, and other semiconductor products. In the field of memory, Nantero has developed NRAMTM, a high-density fast nonvolatile Random Access Memory. Nantero is the first company to actively develop semiconductor products using carbon nanotubes in a production CMOS fab. Nantero is also the first company to develop microelectronic-grade carbon nanotube material, compatible with production CMOS fabs.
37

Dai, H. J.; Wong, E. W.; Lu, Y. Z.; Fan, S. S.; Lieber, C. M. Synthesis and characterization of carbide nanorods. Nature 1995, 375, 769-772.

38

Wong, E. W.; Maynor, B. W.; Burns, L. D.; Lieber, C. M. Growth of metal carbide nanotubes and nanorods. Chem. Mater. 1996, 8, 2041-2046.

39
Lieber, C. M.; Morales, A. M.; Sheehan, P. E.; Wong, E. W.; Yang, P. One-dimensional nanostructures: Rational synthesis, novel properties and applications. InProceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale, Houston, USA, 1997, pp 165-187.
40

Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.

41

Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48-51.

42

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435-445.

43

Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298-302.

44

Duan, X. F.; Wang, J. F.; Lieber, C. M. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 2000, 76, 1116-1118.

45

Wei, Q.; Lieber, C. M. Solution-based synthesis of magnesium oxide nanorods. MRS Proc. 1999, 581, 3-7.

46

Wei, Q.; Lieber, C. M. Synthesis of single crystal bismuth-telluride and lead-telluride nanowires for new thermoelectrical materials. MRS Proc. 1999, 581, 219-223.

47

Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213-5216.

48

Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214-2216.

49

Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 2001, 105, 4062-4064.

50

Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.

51

Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B2002, 106, 4036-4039.

52

Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multi-shell nanowire heterostructures. Nature 2002, 420, 57-61.

53

Zhong, Z. H.; Qian, F.; Wang, D. L.; Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 2003, 3, 343-346.

54

Barrelet, C. J.; Wu, Y.; Bell, D. C.; Lieber, C. M. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 2003, 125, 11498-11499.

55

Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433-436.

56

Wang, D. L.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871-874.

57

Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 2004, 84, 4176-4178.

58

Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M. Semiconductor nanowire heterostructures. Phil. Trans. R. Soc. Lond. A 2004, 362, 1247-1260.

59

Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61-65.

60

Bell, D. C.; Wu, Y.; Barrelet, C. J.; Gradečak, S.; Xiang, J.; Timko B. P.; Lieber, C. M. Imaging and analysis of nanowires. Microscop. Res. Tech. 2004, 64, 373-389.

61

Qian, F.; Li, Y.; Gradečak, S.; Wang, D.; Barrelet, C. J.; Lieber, C. M. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 2004, 4, 1975-1979.

62

Zheng, G.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890-1893.

63

Lu, W.; Xiang, J.; Timko, B. P.; Wu, Y.; Lieber, C. M. One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10046-10051.

64

Radovanovic, P.V.; Barrelet, C. J.; Gradečak, S.; Qian, F.; Lieber, C. M. General synthesis of manganese-doped Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor nanowires. Nano Lett. 2005, 5, 1407-1411.

65

Qian, F.; Gradečak, S.; Li, Y.; Wen, C. -Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287-2291.

66

Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation doped silicon nanowires. Science 2005, 310, 1304-1307.

67

Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489-493.

68

Li, Y.; Xiang, J.; Qian, F.; Gradečak, S.; Wu, Y.; Yan, H.; Blom, D. A.; Lieber, C. M. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 2006, 6, 1468-1473.

69

Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Materials Today 2006, 9, 18-27.

70

Agarwal, R.; Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A: Mater. Sci. Proc. 2006, 85, 209-215.

71

Lu, W.; Lieber, C. M. Semiconductor nanowires. J. Phys. D: Appl. Phys. 2006, 39, R387-R406.

72

Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929-2934.

73

Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99-108.

74

Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett. 2007, 7, 3214-3218.

75

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.

76

Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu, W.; Lieber, C. M. Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 2008, 8, 386-391.

77

Park, W. I.; Zheng, G. F.; Jiang, X. C.; Tian, B. Z.; Lieber, C. M. Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. Nano Lett. 2008, 8, 3004-3009.

78

Qian, F.; Li, Y.; Gradečak, S.; Park, H. -G.; Dong, Y. J.; Ding, Y.; Wang, Z. L.; Lieber, C. M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater. 2008, 7, 701-706.

79

Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456-3460.

80

Dong, Y. J.; Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Coaxial group Ⅲ-nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183-2187.

81

Zwanenburg, F. A.; van Loon, A. A.; Steele, G. A.; van Rijmenam, C. E. W. M.; Balder, T.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Ultra-small silicon quantum dots. J. Appl. Phys. 2009, 105, 124314-1.

82

Xie, P.; Hu, Y. J.; Fang, Y.; Huang, J. L.; Lieber, C. M. Diameter-dependent dopant location in silicon and germanium nanowires. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15254-15258.

83

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824-829.

84

Tian, B. Z.; Cohen-Karni, T.; Qing, Q.; Duan, X. J.; Xie, P.; Lieber, C. M. Three-dimensional, flexible nanoscale field effect transistors as localized bioprobes. Science 2010, 329, 830-834.

85

Jiang, X. C.; Tian, B. Z.; Xiang, J.; Qian, F.; Zheng, G. F.; Wang, H. T.; Mai, L. Q.; Lieber, C. M. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 12212-12216.

86

Lieber, C. M. Semiconductor nanowires: A platform for nanoscience and nanotechnology. MRS Bull. 2011, 36, 1052-1063.

87

Kempa, T. J.; Cahoon, J. F.; Kim, S. -K.; Day, R. W.; Bell, D. C.; Park, H. -G.; Lieber, C. M. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 1407-1412.

88

Jiang, Z.; Qing, Q.; Xie, P.; Gao, R. X.; Lieber, C. M. Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording. Nano Lett. 2012, 12, 1711-1716.

89

Cohen-Karni, T.; Casanova, D.; Cahoon, J. F.; Qing, Q.; Bell, D. C.; Lieber, C. M. Synthetically-encoded ultrashort-channel nanowire transistors for fast, point-like cellular signal detection. Nano Lett. 2012, 12, 2639-2644.

90

Xu, L.; Jiang, Z.; Qing, Q.; Mai, L. Q.; Zhang, Q. J.; Lieber, C. M. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes. Nano Lett. 2013, 13, 746-751.

91

Kempa, T. J.; Kim, S. -K.; Day, R. W.; Park, H. -G.; Nocera, D. G.; Lieber, C. M. Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices. J. Am. Chem. Soc. 2013, 135, 18354-18357.

92

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66-69.

93

Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, 630-633.

94

Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.

95

Lieber, C. M. The incredible shrinking circuit. Sci. Am. 2001, 285, 59-64.

96

Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. -H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.

97

Lieber, C. M. Nanoscience and nanotechnology: Building a big future from small things; New York Academy of Sciences: New York, 2002; pp 6-9.

98
Duan, X.; Huang, Y.; Lieber, C. M. Nanowire nanocircuits. In McGraw-Hill Yearbook of Science and Technology. Licker, M. D. et al. Eds.; McGraw-Hill: 2003; pp 272-276.
99

Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486-491.

100

Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255-1259.

101

McAlpine, M. C.; Friedman, R. S.; Jin, S.; Lin, K. -H.; Wang, W. U.; Lieber, C. M. High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett. 2003, 3, 1531-1535.

102

Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 2003, 302, 1377-1379.

103

Jin, S.; Whang, D.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M. Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 2004, 4, 915-919.

104

Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142-147.

105

Agarwal, R.; Ladavac, K.; Roichman, Y.; Yu, G. H.; Lieber, C. M.; Grier, D. G. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 2005, 13, 8906-8912.

106

Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773-777.

107

Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 2007, 6, 841-850.

108

Yan, H.; Choe, H. S.; Nam, S.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable nanowire circuits for nanoprocessors. Nature 2011, 470, 240-244.

109

Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329-335.

110

Yao. J.; Yan, H.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 2431-2435.

111

Huang, Y.; Duan, X. F.; Cui, Y.; Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2002, 2, 101-104.

112

Duan, X. F.; Huang, Y.; Cui, Y.; Lieber, C. M. Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano Lett. 2002, 2, 487-490.

113

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149-152.

114

Friedman, R. S.; McAlpine, M. C.; Ricketts, D. S.; Ham, D.; Lieber, C. M. High-speed integrated nanowire circuits. Nature 2005, 434, 1085.

115

McAlpine, M. C.; Friedman, R. S.; Lieber, C. M. High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 2005, 93, 1357-1363.

116

Hu, Y. J.; Xiang, J.; Liang, G.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett. 2008, 8, 925-930.

117

Lu, W.; Xie, P.; Lieber, C. M. Nanowire transistor performance limits and applications. IEEE Trans. Electron Dev. 2008, 55, 2859-2876.

118

Nam, S.; Jiang, X. C.; Xiong, Q. H.; Ham, D.; Lieber, C. M. Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21035-21038.

119

Zhong, Z. H.; Fang, Y.; Lu, W.; Lieber, C. M. Coherent single charge transport in molecular-scale silicon nanowires. Nano Lett. 2005, 5, 1143-1146.

120

Xiang, J.; Vidan, A.; Tinkham, M.; Westervelt, R. M.; Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nat. Nanotechnol. 2006, 1, 208-213.

121

Hu, Y.; Churchill, H. O. H.; Reilly, D. J.; Xiang, J.; Lieber, C. M.; Marcus, C. M. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol. 2007, 2, 622-625.

122

Roddaro, S.; Fuhrer, A.; Brusheim, P.; Fasth, C.; Xu, H. Q.; Samuelson, L.; Xiang, J.; Lieber, C. M. Spin states of holes in Ge/Si nanowire quantum dots. Phys. Rev. Lett. 2008, 101, 186802.

123

Zwanenburg, F. A.; van Rijmenam, C. E. W. M.; Fang, Y.; Lieber, C. M.; Kouwenhoven, L. P. Spin states of the first four holes in a silicon nanowire quantum dot. Nano Lett. 2009, 9, 1071-1079.

124

Lee, E. J. H.; Jiang, X. C.; Aguado, R.; Katsaros, G.; Lieber, C. M.; De Franceschi, S. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 2012, 109, 186802.

125

Lee, E. J. H.; Jiang, X. C.; Houzet, M.; Aguado, R.; Lieber, C. M.; De Franceschi, S. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotechnol. 2014, 9, 79-84.

126

Higginbotham, A.; Larsen, T. W.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M.; Kuemmeth, F. Hole spin coherence in a Ge/Si heterostructure nanowire. Nano Lett. 2014, 14, 3582-3586.

127

Higginbotham, A. P.; Kuemmeth, F.; Larsen, T. W.; Fitzpatrick, M.; Yao, J.; Yan, H.; Lieber, C. M.; Marcus, C. M. Antilocalization of Coulomb blockade in Ge/Si nanowire. Phys. Rev. Lett. 2014, 112, 216806.

128

Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455-1457.

129

Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241-245.

130

Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981-1985.

131

Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917-920.

132

Greytak, A. B.; Barrelet, C. J.; Li, Y.; Lieber, C. M. Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 2005, 87, 151103.

133

Gradečak, S.; Qian, F.; Li, Y.; Park, H. -G.; Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111.

134

Barrelet, C. J.; Bao, J. M.; Lončar, M.; Park, H. -G.; Capasso, F.; Lieber, C. M. Hybrid single-nanowire photonic crystal and microresonator structures. Nano Lett. 2006, 6, 11-15.

135

Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly-sensitive and spatially-resolved photon detection. Nat. Mater. 2006, 5, 352-356.

136

Park, H. -G.; Barrelet, C. J.; Wu, Y. N.; Tian, B. Z.; Qian, F.; Lieber, C. M. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2008, 2, 622-626.

137

Zhang, Q.; Li, G. Y.; Liu, X. F.; Qian, F.; Li, Y.; Sum, T. C.; Lieber, C. M.; Xiong, Q. H. A room temperature low-threshold ultraviolet plasmonicnanolaser. Nat. Comm. 2014, 5, 4953.

138

Tian, B. Z.; Kempa, T. J.; Lieber, C. M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16-24.

139

Kim, S. -K.; Day, R. W.; Cahoon, J. F.; Kempa, T. J.; Song, K. -D.; Park, H. -G.; Lieber, C. M. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 2012, 12, 4971-4976.

140

Kempa, T. J.; Day, R. W.; Kim, S. -K.; Park, H. -G.; Lieber, C. M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 2013, 6, 719-733.

141

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

142

Yang, P. D.; Tarascon, J. -M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560-563.

143

Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828-11862.

144

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.

145

Hahm, J. -I.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51-54.

146

Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14017-14022.

147

Wang, W. U.; Chen, C.; Lin, K. -H.; Fang, Y.; Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3208-3212.

148

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.

149

Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nanowire sensors for medicine and the life sciences. Nanomedicine 2006, 1, 51-65.

150

Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100-1104.

151

Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711-1724.

152

Timko, B. P.; Cohen-Karni, T.; Yu, G. H.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 2009, 9, 914-918.

153

Cohen-Karni, T.; Timko, B. P.; Weiss, L. E.; Lieber, C. M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 7309-7313.

154

Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547-552.

155

Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. Nanowire transistor arrays for mapping neural circuits in acute brain slices. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1882-1887.

156

Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010, 10, 1098-1102.

157

Timko, B. P.; Cohen-Karni, T.; Qing, Q.; Tian, B. Z.; Lieber, C. M. Design and implementation of functional nanoelectronic interfaces with biomolecules, cells and tissue using nanowire device arrays. IEEE Trans. Nanotechnol. 2010, 9, 269-280.

158

Zheng, G. F.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179-3183.

159

Xie, P.; Xiong, Q. H.; Fang, Y.; Qing, Q.; Lieber, C. M. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 2012, 7, 119-125.

160

Duan, X. J.; Gao, R. X.; Xie, P.; Cohen-Karni, T.; Qing, Q.; Choe, H. S.; Tian, B. Z.; Jiang, X. C.; Lieber, C. M. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 2012, 7, 174-179.

161

Gao, R. X.; Strehle, S.; Tian, B. Z.; Cohen-Karni, T.; Xie, P.; Duan, X. J.; Qing, Q.; Lieber, C. M. Outside looking in: Nanotube transistor intracellular sensors. Nano Lett. 2012, 12, 3329-3333.

162

Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986-994.

163

Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. U.S. A. 2013, 110, 6694-6699.

164

Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 2013, 6, 31-51.

165

Duan, X. J.; Fu, T. -M.; Liu, J.; Lieber, C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 2013, 8, 351-373.

166

Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142-147.

167

Fu, T. -M.; Duan, X. J.; Jiang, Z.; Dai, X. C.; Xie, P.; Cheng, Z. G.; Lieber, C. M. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 1259-1264.

168

Zhou, W.; Dai, X. C.; Fu, T-M.; Xie, C.; Liu, J.; Lieber, C. M. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett. 2014, 14, 1614-1619.

169

Xie, C.; Lin, Z. L.; Hanson, L.; Cui, Y.; Cui, B. X. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 2012, 7, 185-190.

170

Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. -H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180-184.

171

Shepherd, G. M. The Synaptic Organization of the Brain, 5th Ed.; Oxford Univ Press, Inc. : New York, 2004.

172

Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature 2009, 461, 930-939.

173

Seymour, J. P.; Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007, 28, 3594-3607.

174

Viventi, J.; Kim, D. -H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. -S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. -W.; Vanleer, A. C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599-1605.

175

Erickson, J.; Tooker, A.; Tai, Y. C.; Pine, J. Caged neuron MEA: Asystem for long-term investigation of cultured neural network connectivity. J. Neurosci. Methods 2008, 175, 1-16.

176

Egert, U.; Heck, D.; Aertsen, A. Two-dimensional monitoring of spiking networks in acute brain slices. Exp. Brain Res. 2002, 142, 268-274.

177

Wirth, C.; Lüscher, H. R. Spatiotemporalevolution of excitation and inhibition in the rat barrel cortex investigated with multielectrodearrays. J. Neurophysiol. 2004, 91, 1635-1647.

178

Frey, U.; Egert, U.; Heer, F.; Hafizovic, S.; Hierlemann, A. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 2009, 24, 2191-2198.

179

Stangl, C.; Fromherz, P. Neuronal field potential in acute hippocampus slice recorded with transistor and micropipette electrode. Eur. J. Neurosci. 2008, 27, 958-964.

180
Molleman, A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology; John Wiley & Sons, Ltd. : Chichester, West Sussex, England, 2003.https://doi.org/10.1002/0470856521
181

Davie, J. T.; Kole, M. H. P.; Letzkus, J. J.; Rancz, E. A.; Spruston, N.; Stuart, G. J.; Häusser, M. Dendritic patch-clamp recording. Nat. Protoc. 2006, 1, 1235-1247.

182

Duan, X. J.; Lieber, C. M. Nanoelectronicsmeets biology: From new nanoscaledevices for live-cell recording to 3D innervated tissues. Chem. Asian J. 2013, 8, 2304-2314.

183

Bers, D. M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198-205.

184

Koch, C.; Reid, R. C. Neuroscience: Observatories of the mind. Nature 2012, 483, 397-398.

185

Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13-22.

186

Dvir, T.; Timko, B. P.; Brigham, M. D.; Naik, S. R.; Karajanagi, S. S.; Levy, O.; Jin, H. W.; Parker, K. K.; Langer, R.; Kohane, D. S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011, 6, 720-725.

187

Kim, D. -H.; Lu, N. S.; Ma, R.; Kim, Y. -S.; Kim, R. -H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; et al. Epidermal electronics. Science, 2011, 333, 838-843.

Nano Research
Pages 1-22
Cite this article:
Duan X, Lieber CM. Nanoscience and the nano-bioelectronics frontier. Nano Research, 2015, 8(1): 1-22. https://doi.org/10.1007/s12274-014-0692-8
Part of a topical collection:

972

Views

74

Crossref

N/A

Web of Science

36

Scopus

1

CSCD

Altmetrics

Received: 07 December 2014
Revised: 09 December 2014
Accepted: 10 December 2014
Published: 03 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return